Ontology highlight
ABSTRACT: Objectives
The epidermal growth factor receptor variant type III (EGFRvIII) is the most common mutation of EGFR in glioblastoma multiforme (GBM) and is found in approximately 25% of all GBMs. Intriguingly, EGFRvIII is mostly found in GFAP+ astrocytic tumour cells in the brain, suggesting connection of EGFRvIII to astrogenesis. In this study, we explored whether EGFRvIII mutation facilitates astrogenesis in human development setting.Materials and methods
Using CRISPR-Cas9, we generated EGFRvIII mutations in H9-hESCs. Wild type (wt) H9-hESCs were used as an isogenic control. Next, we generated cerebral organoids using the wt and EGFRvIII-hESCs and examined the astrogenic differentiation of the brain organoids.Results
EGFRvIII-organoids showed abundant astrocytes (GFAP+ , S100?+ ), while no astrocytes were detected in wt hESC-derived organoids at day 49. On the contrary, TUJ1+ neurons were more abundant in the wt-organoids than the EGFRvIII-organoids. This result suggested that constitutively active EGFRvIII promoted astrogenesis at the expense of neurogenesis. In addition, the EGFRvIII-organoids were larger in size and retained more Ki67+ cells than wt-organoids, indicating enhanced cell proliferation by the mutation. The EGFRvIII-organoids displayed massive apoptotic cell death after treatment with temozolomide and hence, could be used for evaluation of anti-GBM drugs.Conclusions
EGFRvIII mutation-induced astrogenesis and massive cell proliferation in a human brain development model. These results provide us new insights into the mechanisms relating EGFRvIII mutation-mediated gliogenesis and gliomagenesis.
SUBMITTER: Kim HM
PROVIDER: S-EPMC7848959 | biostudies-literature | 2021 Feb
REPOSITORIES: biostudies-literature
Cell proliferation 20201206 2
<h4>Objectives</h4>The epidermal growth factor receptor variant type III (EGFRvIII) is the most common mutation of EGFR in glioblastoma multiforme (GBM) and is found in approximately 25% of all GBMs. Intriguingly, EGFRvIII is mostly found in GFAP<sup>+</sup> astrocytic tumour cells in the brain, suggesting connection of EGFRvIII to astrogenesis. In this study, we explored whether EGFRvIII mutation facilitates astrogenesis in human development setting.<h4>Materials and methods</h4>Using CRISPR-Ca ...[more]