Unknown

Dataset Information

0

Detection of a DNA Methylation Signature for the Intellectual Developmental Disorder, X-Linked, Syndromic, Armfield Type.


ABSTRACT: A growing number of genetic neurodevelopmental disorders are known to be associated with unique genomic DNA methylation patterns, called episignatures, which are detectable in peripheral blood. The intellectual developmental disorder, X-linked, syndromic, Armfield type (MRXSA) is caused by missense variants in FAM50A. Functional studies revealed the pathogenesis to be a spliceosomopathy that is characterized by atypical mRNA processing during development. In this study, we assessed the peripheral blood specimens in a cohort of individuals with MRXSA and detected a unique and highly specific DNA methylation episignature associated with this disorder. We used this episignature to construct a support vector machine model capable of sensitive and specific identification of individuals with pathogenic variants in FAM50A. This study contributes to the expanding number of genetic neurodevelopmental disorders with defined DNA methylation episignatures, provides an additional understanding of the associated molecular mechanisms, and further enhances our ability to diagnose patients with rare disorders.

SUBMITTER: Haghshenas S 

PROVIDER: S-EPMC7865843 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Detection of a DNA Methylation Signature for the Intellectual Developmental Disorder, X-Linked, Syndromic, Armfield Type.

Haghshenas Sadegheh S   Levy Michael A MA   Kerkhof Jennifer J   Aref-Eshghi Erfan E   McConkey Haley H   Balci Tugce T   Siu Victoria Mok VM   Skinner Cindy D CD   Stevenson Roger E RE   Sadikovic Bekim B   Schwartz Charles C  

International journal of molecular sciences 20210123 3


A growing number of genetic neurodevelopmental disorders are known to be associated with unique genomic DNA methylation patterns, called episignatures, which are detectable in peripheral blood. The intellectual developmental disorder, X-linked, syndromic, Armfield type (MRXSA) is caused by missense variants in <i>FAM50A</i>. Functional studies revealed the pathogenesis to be a spliceosomopathy that is characterized by atypical mRNA processing during development. In this study, we assessed the pe  ...[more]

Similar Datasets

| S-EPMC10183470 | biostudies-literature
2020-03-31 | GSE147730 | GEO
| S-EPMC4926300 | biostudies-literature
| S-EPMC2687548 | biostudies-literature
| S-EPMC7119275 | biostudies-literature
| S-EPMC3359247 | biostudies-literature
| S-EPMC9323143 | biostudies-literature
| S-EPMC6585076 | biostudies-literature
2021-03-31 | GSE171119 | GEO
2017-04-13 | GSE80261 | GEO