Hypergravity-Induced Accumulation: A New, Efficient, and Simple Strategy to Improve the Thermal Conductivity of Boron Nitride Filled Polymer Composites.
Ontology highlight
ABSTRACT: Thermal conductive polymer composites (filled type) consisting of thermal conductive fillers and a polymer matrix have been widely used in a range of areas. More than 10 strategies have been developed to improve the thermal conductivity of polymer composites. Here we report a new "hypergravity accumulation" strategy. Raw material mixtures of boron nitride/silicone rubber composites were treated in hypergravity fields (800-20,000 g, relative gravity acceleration) before heat-curing. A series of comparison studies were made. It was found that hypergravity treatments could efficiently improve the microstructures and thermal conductivity of the composites. When the hypergravity was about 20,000 g (relative gravity acceleration), the obtained spherical boron nitride/silicone rubber composites had highly compacted microstructures and high and isotropic thermal conductivity. The highest thermal conductivity reached 4.0 W/mK. Thermal interface application study showed that the composites could help to decrease the temperature on a light-emitting diode (LED) chip by 5 °C. The mechanism of the improved microstructure increased thermal conductivity, and the high viscosity problem in the preparation of boron nitride/silicone rubber composites, and the advantages and disadvantages of the hypergravity accumulation strategy, were discussed. Overall, this work has provided a new, efficient, and simple strategy to improve the thermal conductivity of boron nitride/silicone rubber and other polymer composites (filled type).
SUBMITTER: Yu K
PROVIDER: S-EPMC7866976 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA