Unknown

Dataset Information

0

NMR Structure Determinations of Small Proteins Using only One Fractionally 20% 13C- and Uniformly 100% 15N-Labeled Sample.


ABSTRACT: Uniformly 13C- and 15N-labeled samples ensure fast and reliable nuclear magnetic resonance (NMR) assignments of proteins and are commonly used for structure elucidation by NMR. However, the preparation of uniformly labeled samples is a labor-intensive and expensive step. Reducing the portion of 13C-labeled glucose by a factor of five using a fractional 20% 13C- and 100% 15N-labeling scheme could lower the total chemical costs, yet retaining sufficient structural information of uniformly [13C, 15N]-labeled sample as a result of the improved sensitivity of NMR instruments. Moreover, fractional 13C-labeling can facilitate reliable resonance assignments of sidechains because of the biosynthetic pathways of each amino-acid. Preparation of only one [20% 13C, 100% 15N]-labeled sample for small proteins (<15 kDa) could also eliminate redundant sample preparations of 100% 15N-labeled and uniformly 100% [13C, 15N]-labeled samples of proteins. We determined the NMR structures of a small alpha-helical protein, the C domain of IgG-binding protein A from Staphylococcus aureus (SpaC), and a small beta-sheet protein, CBM64 module using [20% 13C, 100% 15N]-labeled sample and compared with the crystal structures and the NMR structures derived from the 100% [13C, 15N]-labeled sample. Our results suggest that one [20% 13C, 100% 15N]-labeled sample of small proteins could be routinely used as an alternative to conventional 100% [13C, 15N]-labeling for backbone resonance assignments, NMR structure determination, 15N-relaxation analysis, and ligand-protein interaction.

SUBMITTER: Heikkinen HA 

PROVIDER: S-EPMC7867066 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

NMR Structure Determinations of Small Proteins Using only One Fractionally 20% <sup>13</sup>C- and Uniformly 100% <sup>15</sup>N-Labeled Sample.

Heikkinen Harri A HA   Backlund Sofia M SM   Iwaï Hideo H  

Molecules (Basel, Switzerland) 20210201 3


Uniformly <sup>13</sup>C- and <sup>15</sup>N-labeled samples ensure fast and reliable nuclear magnetic resonance (NMR) assignments of proteins and are commonly used for structure elucidation by NMR. However, the preparation of uniformly labeled samples is a labor-intensive and expensive step. Reducing the portion of <sup>13</sup>C-labeled glucose by a factor of five using a fractional 20% <sup>13</sup>C- and 100% <sup>15</sup>N-labeling scheme could lower the total chemical costs, yet retaining  ...[more]

Similar Datasets

| S-EPMC3414644 | biostudies-literature
| S-EPMC3568759 | biostudies-literature
| S-EPMC10545081 | biostudies-literature
| S-EPMC2676717 | biostudies-literature
| S-EPMC4852873 | biostudies-literature
| S-EPMC5944331 | biostudies-literature
| S-EPMC5884722 | biostudies-literature
| S-EPMC4396712 | biostudies-literature
| S-EPMC4788682 | biostudies-literature
| S-EPMC3238802 | biostudies-literature