Unknown

Dataset Information

0

Direct RBS Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli.


ABSTRACT:

Background

Violaceins have attracted much attention as potential targets used in medicines, food additives, insecticides, cosmetics and textiles, but low productivity was the key factor to limit their large-scale applications. This work put forward a direct RBS engineering strategy to engineer the violacein biosynthetic gene cluster cloned from Chromobacterium violaceum ATCC 12,472 to efficiently improve the fermentation titers.

Results

Through four-rounds of engineering of the native RBSs within the violaceins biosynthetic operon vioABCDE, this work apparently broke through the rate-limiting steps of intermediates conversion, resulting in 2.41-fold improvement of violaceins production compared to the titers of the starting strain Escherichia coli BL21(DE3) (Vio12472). Furthermore, by optimizing the batch-fermentation parameters including temperature, concentration of IPTG inducer and fermentation time, the maximum yield of violaceins from (BCDE)m (tnaA-) reached 3269.7 µM at 2 mM tryptophan in the medium. Interestingly, rather than previous reported low temperature (20 ?), we for the first time found the RBS engineered Escherichia coli strain (BCDE)m worked better at higher temperature (30 ? and 37 ?), leading to a higher-level production of violaceins.

Conclusions

To our knowledge, this is the first time that a direct RBS engineering strategy is used for the biosynthesis of natural products, having the potential for a greater improvement of the product yields within tryptophan hyperproducers and simultaneously avoiding the costly low temperature cultivation for large-scale industrial production of violaciens. This direct RBS engineering strategy could also be easily and helpfully used in engineering the native RBSs of other larger and value-added natural product biosynthetic gene clusters by widely used site-specific mutagenesis methods represented by inverse PCR or CRISPR-Cas9 techniques to increase their fermentation titers in the future.

SUBMITTER: Zhang Y 

PROVIDER: S-EPMC7869524 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Direct RBS Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli.

Zhang Yuyang Y   Chen Hongping H   Zhang Yao Y   Yin Huifang H   Zhou Chenyan C   Wang Yan Y  

Microbial cell factories 20210208 1


<h4>Background</h4>Violaceins have attracted much attention as potential targets used in medicines, food additives, insecticides, cosmetics and textiles, but low productivity was the key factor to limit their large-scale applications. This work put forward a direct RBS engineering strategy to engineer the violacein biosynthetic gene cluster cloned from Chromobacterium violaceum ATCC 12,472 to efficiently improve the fermentation titers.<h4>Results</h4>Through four-rounds of engineering of the na  ...[more]

Similar Datasets

| S-EPMC6366047 | biostudies-literature
| S-EPMC4256081 | biostudies-literature
| S-EPMC8989516 | biostudies-literature
| S-EPMC153090 | biostudies-literature
| S-EPMC4753468 | biostudies-literature
| S-EPMC3918841 | biostudies-literature
| S-EPMC10576301 | biostudies-literature
| S-EPMC4194701 | biostudies-literature
| S-EPMC5714517 | biostudies-literature