Unknown

Dataset Information

0

Mesenchymal glioblastoma-induced mature de-novo vessel formation of vascular endothelial cells in a microfluidic device.


ABSTRACT: High vascularization is a biological characteristic of glioblastoma (GBM); however, an in-vitro experimental model to verify the mechanism and physiological role of vasculogenesis in GBM is not well-established. Recently, we established a self-organizing vasculogenic model using human umbilical vein endothelial cells (HUVECs) co-cultivated with human lung fibroblasts (hLFs). Here, we exploited this system to establish a realistic model of vasculogenesis in GBM. We developed two polydimethylsiloxane (PDMS) devices, a doughnut-hole dish and a 5-lane microfluidic device to observe the contact-independent effects of glioblastoma cells on HUVECs. We tested five patient-derived and five widely used GBM cell lines. Confocal fluorescence microscopy was used to observe the morphological changes in Red Fluorescent Protein (RFP)-HUVECs and fluorescein isothiocyanate (FITC)-dextran perfusion. The genetic and expression properties of GBM cell lines were analyzed. The doughnut-hole dish assay revealed KNS1451 as the only cells to induce HUVEC transformation to vessel-like structures, similar to hLFs. The 5-lane device assay demonstrated that KNS1451 promoted the formation of a vascular network that was fully perfused, revealing the functioning luminal construction. Microarray analysis revealed that KNS1451 is a mesenchymal subtype of GBM. Using a patient-derived mesenchymal GBM cell line, mature de-novo vessel formation could be induced in HUVECs by contact-independent co-culture with GBM in a microfluidic device. These results support the development of a novel in vitro research model and provide novel insights in the neovasculogenic mechanism of GBM and may potentially facilitate the future detection of unknown molecular targets.

SUBMITTER: Amemiya T 

PROVIDER: S-EPMC7884354 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mesenchymal glioblastoma-induced mature de-novo vessel formation of vascular endothelial cells in a microfluidic device.

Amemiya Takeo T   Hata Nobuhiro N   Mizoguchi Masahiro M   Yokokawa Ryuji R   Kawamura Yoichiro Y   Hatae Ryusuke R   Sangatsuda Yuhei Y   Kuga Daisuke D   Fujioka Yutaka Y   Takigawa Kosuke K   Akagi Yojiro Y   Yoshimoto Koji K   Iihara Koji K   Miura Takashi T  

Molecular biology reports 20210102 1


High vascularization is a biological characteristic of glioblastoma (GBM); however, an in-vitro experimental model to verify the mechanism and physiological role of vasculogenesis in GBM is not well-established. Recently, we established a self-organizing vasculogenic model using human umbilical vein endothelial cells (HUVECs) co-cultivated with human lung fibroblasts (hLFs). Here, we exploited this system to establish a realistic model of vasculogenesis in GBM. We developed two polydimethylsilox  ...[more]

Similar Datasets

| S-EPMC10251125 | biostudies-literature
| S-EPMC4275002 | biostudies-literature
| S-EPMC3024788 | biostudies-literature
| S-EPMC7718010 | biostudies-literature
| S-EPMC8876009 | biostudies-literature
| S-EPMC6912347 | biostudies-literature
| S-EPMC7337251 | biostudies-literature
| S-EPMC2528254 | biostudies-literature
| S-EPMC8705798 | biostudies-literature
| S-EPMC9405736 | biostudies-literature