Randomly positioned gold nanoparticles as fluorescence enhancers in apta-immunosensor for malaria test.
Ontology highlight
ABSTRACT: A plasmon-enhanced fluorescence-based antibody-aptamer biosensor - consisting of gold nanoparticles randomly immobilized onto a glass substrate via electrostatic self-assembly - is described for specific detection of proteins in whole blood. Analyte recognition is realized through a sandwich scheme with a capture bioreceptor layer of antibodies - covalently immobilized onto the gold nanoparticle surface in upright orientation and close-packed configuration by photochemical immobilization technique (PIT) - and a top bioreceptor layer of fluorescently labelled aptamers. Such a sandwich configuration warrants not only extremely high specificity, but also an ideal fluorophore-nanostructure distance (approximately 10-15 nm) for achieving strong fluorescence amplification. For a specific application, we tested the biosensor performance in a case study for the detection of malaria-related marker Plasmodium falciparum lactate dehydrogenase (PfLDH). The proposed biosensor can specifically detect PfLDH in spiked whole blood down to 10 pM (0.3 ng/mL) without any sample pretreatment. The combination of simple and scalable fabrication, potentially high-throughput analysis, and excellent sensing performance provides a new approach to biosensing with significant advantages compared to conventional fluorescence immunoassays.
SUBMITTER: Minopoli A
PROVIDER: S-EPMC7886758 | biostudies-literature | 2021 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA