Unknown

Dataset Information

0

One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics.


ABSTRACT: T-cell engaging biologics is a class of novel and promising immune-oncology compounds that leverage the immune system to eradicate cancer. Here, we compared and contrasted a bispecific diabody-Fc format, which displays a relatively short antigen-binding arm distance, with our bispecific IgG platform. By generating diverse panels of antigen-expressing cells where B cell maturation antigen is either tethered to the cell membrane or located to the juxtamembrane region and masked by elongated structural spacer units, we presented a systematic approach to investigate the role of antigen epitope location and molecular formats in immunological synapse formation and cytotoxicity. We demonstrated that diabody-Fc is more potent for antigen epitopes located in the membrane distal region, while bispecific IgG is more efficient for membrane-proximal epitopes. Additionally, we explored other parameters, including receptor density, antigen-binding affinity, and kinetics. Our results show that molecular format and antigen epitope location, which jointly determine the intermembrane distance between target cells and T cells, allow decoupling of cytotoxicity and cytokine release, while antigen-binding affinities appear to be positively correlated with both readouts. Our work offers new insight that could potentially lead to a wider therapeutic window for T-cell engaging biologics in general.

SUBMITTER: Chen W 

PROVIDER: S-EPMC7889206 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC2910003 | biostudies-literature
| S-EPMC7082209 | biostudies-literature
| S-EPMC7280727 | biostudies-literature
| S-EPMC3963516 | biostudies-literature
| S-EPMC5508107 | biostudies-literature
| S-EPMC9263414 | biostudies-literature
| S-EPMC8179434 | biostudies-literature
| S-EPMC5118200 | biostudies-literature
| S-EPMC3547662 | biostudies-literature
| S-EPMC3865782 | biostudies-literature