Unknown

Dataset Information

0

Associating Multivariate Traits with Genetic Variants Using Collapsing and Kernel Methods with Pedigree- or Population-Based Studies.


ABSTRACT: In genetic association analysis, several relevant phenotypes or multivariate traits with different types of components are usually collected to study complex or multifactorial diseases. Over the past few years, jointly testing for association between multivariate traits and multiple genetic variants has become more popular because it can increase statistical power to identify causal genes in pedigree- or population-based studies. However, most of the existing methods mainly focus on testing genetic variants associated with multiple continuous phenotypes. In this investigation, we develop a framework for identifying the pleiotropic effects of genetic variants on multivariate traits by using collapsing and kernel methods with pedigree- or population-structured data. The proposed framework is applicable to the burden test, the kernel test, and the omnibus test for autosomes and the X chromosome. The proposed multivariate trait association methods can accommodate continuous phenotypes or binary phenotypes and further can adjust for covariates. Simulation studies show that the performance of our methods is satisfactory with respect to the empirical type I error rates and power rates in comparison with the existing methods.

SUBMITTER: Chien LC 

PROVIDER: S-EPMC7889379 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Associating Multivariate Traits with Genetic Variants Using Collapsing and Kernel Methods with Pedigree- or Population-Based Studies.

Chien Li-Chu LC  

Computational and mathematical methods in medicine 20210209


In genetic association analysis, several relevant phenotypes or multivariate traits with different types of components are usually collected to study complex or multifactorial diseases. Over the past few years, jointly testing for association between multivariate traits and multiple genetic variants has become more popular because it can increase statistical power to identify causal genes in pedigree- or population-based studies. However, most of the existing methods mainly focus on testing gene  ...[more]

Similar Datasets

| S-EPMC4143730 | biostudies-literature
| S-EPMC4158946 | biostudies-other
| S-EPMC8601541 | biostudies-literature
| S-EPMC4469530 | biostudies-literature
| S-EPMC6128903 | biostudies-literature
| S-EPMC4896915 | biostudies-literature
| S-EPMC4143760 | biostudies-literature
| S-EPMC4837055 | biostudies-literature
| S-EPMC1785337 | biostudies-literature
2023-11-26 | GSE248483 | GEO