Project description:To evaluate the prognostic relevance of aortic annulus (AA) and left ventricular outflow tract (LVOT) Fractal dimension (FD). FD is a mathematical concept that describes geometric complexity of a structure and has been shown to predict adverse outcomes in several contexts. Computed tomography (CT) scans from the SOLVE-TAVI trial, which, in a 2 × 2 factorial design, randomized 447 patients to TAVI with the balloon-expandable Edwards Sapien 3 or the self-expanding Medtronic Evolut R, and conscious sedation or general anesthesia, were analyzed semi-automatically with a custom-built software to determine border of AA and LVOT. FD was measured by box counting using grid calibers between 0.8 and 6.75 mm and was compared between patients with none/trivial and mild/moderate paravalvular regurgitation (PVR). Overall, 122 patients had CT scans sufficient for semi-automatic PVR in 30-day echocardiography. PVR was none in 65(53.3%) patients, trace in 9(7.4%), mild in 46(37.7%), moderate in 2(1.6%) and severe in 0 patients. FD determined in diastolic images was significantly higher in patients with mild/moderate PVR (1.0558 ± 0.0289 vs. 1.0401 ± 0.0284, p = 0.017). Annulus eccentricity was the only conventional measure of AA and LVOT geometry significantly correlated to FD (R = 0.337, p < 0.01). Area under the curve (AUC) of diastolic annular FD for prediction of mild/moderate PVR in ROC analysis was 0.661 (0.542-0.779, p = 0.014). FD shows promise in prediction of PVR after TAVI. Further evaluation using larger patient numbers and refined algorithms to better understand its predictive performance is warranted.Trial Registration: www.clinicaltrials.gov , identifier: NCT02737150, date of registration: 13.04.2016.
Project description:The implantation of a left ventricular assist device (LVAD) has become an essential requirement for managing patients with end-stage heart failure. However, aortic valve insufficiency is a contraindication for LVAD implantation in patients with end-stage heart failure, partly because of the decreasing efficiency of mechanical circulatory support and the eventual development of right ventricular failure. Herein, we present the first case of performing transcatheter aortic valve replacement in valve-in-ring along with LVAD implantation for the treatment of a 60-year-old male suffering from refractory heart failure due to dilated cardiomyopathy and pure aortic insufficiency in need of a new aortic bioprosthesis. A balloon-expandable bioprosthetic transcatheter heart valve was implanted into a previously sewn annulus ring into the aortic root via transaortic access. Subsequently, a centrifugal-flow LVAD was implanted. Postoperatively, the patient was in New York Heart Association Functional Class (NYHA) II with 6-min walk test of 310 m. The patient has completed 6 months of follow-up with no events. This novel and feasible surgical technique reduced the cardiopulmonary bypass time and duration of surgery. Furthermore, it avoids the risk of redo sternotomy and decreases the chances of paravalvular leakage and worsening of aortic regurgitation.
Project description:BackgroundTranscatheter aortic valve implantation (TAVI) is a well-established treatment for patients with severe aortic valve stenosis. This procedure requires pre-operative planning by assessment of aortic dimensions on CT Angiography (CTA). It is well-known that the aortic root dimensions vary over the heart cycle. However, sizing is commonly performed at either mid-systole or end-diastole only, which has resulted in an inadequate understanding of its full dynamic behavior.Study goalWe studied the variation in annulus measurements during the cardiac cycle and determined if this variation is dependent on the amount of calcification at the annulus.MethodsWe measured and compared aortic root annular dimensions and calcium volume in CTA acquisitions at 10 cardiac cycle phases in 51 aortic stenosis patients. Sub-group analysis was performed based on the volume of calcium by splitting the population into mildly and severely calcified valves subgroups.ResultsFor most annulus measurements, the largest differences were found between 10% and 70 to 80% cardiac cycle phases. Mean difference (±standard deviation) in annular minimum diameter, maximum diameter, area, and aspect ratio between mid-systole and end-diastole phases were 1.0 ± 0.29 mm (p = 0.065), 0.30 ± 0.24 mm (p = 0.7), 24.1 ± 7.6 mm2 (p < 0.001), and 0.041 ± 0.012 (p = 0.039) respectively. Calcium volume measurements varied strongly during the cardiac cycle. The dynamic annulus area was behaving differently between mildly and severely calcified subgroups (p = 0.02). Furthermore, patients with severe aortic calcification were associated with larger annulus diameters.ConclusionThere is a significant variation of annulus area and calcium volume measurement during the cardiac cycle. In our measurements, only the dynamic variation of the annulus area is dependent on the severity of the aortic calcification. For TAVI candidates, the annulus area is significantly larger in mid-systole compared to end-diastole.
Project description:Transcatheter aortic valve replacement (TAVR) has emerged as a viable treatment option for patients with severe aortic stenosis regardless of its surgical risk stratification (Otto et al., 2021). Aortic angulation is usually measured as the angle between the horizontal and the aortic annulus planes based on preprocedural multidetector computed tomography (MDCT) (Al-Lamee et al., 2011). Extremely horizontal aorta, defined as an aortic angulation greater than 70°, is an unfavorable anatomic structure that poses particular technical challenges for TAVR. Abramowitz et al. (2016) have proved that an extremely horizontal aorta increased the risk of procedural complications, such as lower device success rates, more moderate or even severe perivalvular leakage (PVL), and the need for second valve implantation. Because of the long stent frame, inflexibility, and non-steerability, it is challenging to pass the delivery system of self-expanding valves (SEVs) through an extremely horizontal aorta. As a result, patients with an extremely horizontal aorta have always been excluded from the clinical trials of TAVR, and transfemoral (TF)-TAVR with SEV is considered as an "off-label" use of TAVR (Adams et al., 2014; Kaneko et al., 2020). Herein, we present a technically difficult case, in which a patient with an extremely horizontal aorta underwent TF-TAVR with SEV by applying a unique apical-to-femoral rail strategy.
Project description:BackgroundValve-in-valve transcatheter aortic valve implantation (TAVI) has emerged as a competent alternative for the treatment of degenerated bioprosthetic valves after surgical aortic valve replacement, or during TAVI procedure as a bailout option. Herein, we report a rare case of a self-expandable Medtronic Evolut R valve into a failing Medtronic CoreValve, with the use of modern pre-TAVI imaging screening, suggesting the proper procedural design steps for so complicated implantations.Case summaryA frail 78-year-old woman with a degenerated Medtronic Core Valve 26 mm bioprosthesis, implanted in 2011 due to severe aortic stenosis, was referred to our hospital due to worsening dyspnoea New York Heart Association III. The screening echocardiography documented severe aortic stenosis, while the classical risk scores were in favour of repeated TAVI (EuroSCORE II 5.67%). Computed tomography measurements and three-dimensional (3D) printing model were of great help for the proper valve selection (Medtronic Evolut R 26 mm), while the use of cerebral protection device (Claret Sentinel) was considered as a necessary part of the procedure. The simultaneous use of fluoroscopy and transoesophageal echocardiogram led to optimal haemodynamic result, confirmed by the discharge echocardiogram, with a significant clinical improvement during the first month follow-up.DiscussionThe main periprocedural concerns remain valve malpositioning, coronary artery obstruction, and high remaining transvalvular gradients. The multimodality pre-TAVI imaging screening may be helpful for precise procedural design. Despite the limited use of 3D models, it is necessary to adopt such tissue-mimicking phantoms to increase the possibility of optimal procedural result.
Project description:An 82-year-old man undergoing regular hemodialysis with substantial aortic and mitral valve stenoses underwent aortic valve replacement with concomitant mitral decalcification via the aortic annulus. Postoperative transthoracic echocardiography showed reduced mitral stenosis. The patient was discharged on the 14th postoperative day uneventfully.