Project description:Gynecologic cancers have varying response rates to immunotherapy due to the heterogeneity of each cancer's molecular biology and features of the tumor immune microenvironment (TIME). This article reviews key features of the TIME and its role in the pathophysiology and treatment of ovarian, endometrial, cervical, vulvar, and vaginal cancer. Knowledge of the role of the TIME in gynecologic cancers has been rapidly developing with a large body of preclinical studies demonstrating an intricate yet dichotomous role that the immune system plays in either supporting the growth of cancer or opposing it and facilitating effective treatment. Many targets and therapeutics have been identified including cytokines, antibodies, small molecules, vaccines, adoptive cell therapy, and bacterial-based therapies but most efforts in gynecologic cancers to utilize them have not been effective. However, with the development of immune checkpoint inhibitors, we have started to see the rapid and successful employment of therapeutics in cervical and endometrial cancer. There remain many challenges in utilizing the TIME, particularly in ovarian cancer, and further studies are needed to identify and validate efficacious therapeutics.
Project description:Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.
Project description:Respiratory infections, like the current COVID-19 pandemic, target epithelial cells in the respiratory tract. Alveolar macrophages (AMs) are tissue-resident macrophages located within the lung. They play a key role in the early phases of an immune response to respiratory viruses. AMs are likely the first immune cells to encounter SARS-CoV-2 during an infection and their reaction to the virus will have a profound impact on the outcome of the infection. Interferons (IFNs) are antiviral cytokines and among the first cytokines produced upon viral infection. In this study, AMs from non-infectious donors are challenged with SARS-CoV-2. We demonstrate that challenged AMs are incapable of sensing SARS-CoV-2 and of producing an IFN response in contrast to other respiratory viruses, like influenza A virus and Sendai virus, which trigger a robust IFN response. The absence of IFN production in AMs upon challenge with SARS-CoV2 could explain the initial asymptotic phase observed during COVID-19 and argues against AMs being the sources of proinflammatory cytokines later during infection.
Project description:Drugs that target immune checkpoints (ICPs) have become the most popular weapons in cancer immunotherapy; however, they are only beneficial for a small fraction of patients. Accumulating evidence suggests that the tumor immune microenvironment (TIME) plays a critical role in anti-cancer immunity. This study aimed to assess the potential merits and feasibility of combinational targeting ICPs and TIME in cancer immunotherapy. A total of 31 cancer type-specific datasets in TCGA were individually collected by the publicly available web servers for multiple bioinformatic analyses of ICPs and TIME factors. GEPIA was used to calculate the prognostic indexes, STRING was used to construct protein-protein interactions, cBioPortal was used for visualization and comparison of genetic alterations, and TISIDB was used to explore the correlation to tumor-infiltrating lymphocytes (TILs). Intriguingly, TIME factors were identified to have more global coverage and prognostic significance across multiple cancer types compared with ICPs, thus offering more general targetability in clinical therapy. Moreover, TIME factors showed interactive potential with ICPs, and genomic alteration of TIME factors coupled with that of ICPs, at least in pancreatic cancer. Furthermore, TIME factors were found to be significantly associated with TILs, including but not limited to pancreatic cancer. Finally, the clinical significance and translational potential of further combination therapies that incorporate both ICP inhibitors and TIME factor-targeted treatments were discussed. Together, TIME factors are promising immunotherapeutic targets, and a combination strategy of TIME factors-targeted therapies with ICP inhibitors may benefit more cancer patients in the future.
Project description:Background: N6-methyladenosine (m6A) is among the most prevalent RNA modifications regulating RNA metabolism. The roles of methyltransferase-like 3 (METTL3), a core catalytic subunit, in various cancers remain unclear. Methods: The expression levels of METTL3 in pan-cancer were profiled and their prognostic values were examined. We assessed the relationships between METTL3 expression levels and tumor immune infiltration levels, immune checkpoint gene expression, immune neoantigens, tumor mutation burden, microsatellite instability, and DNA mismatch repair gene expression. Furthermore, a protein-protein interaction network was drawn, and gene set enrichment analysis was conducted to explore the functions of METTL3. Results: METTL3 expression levels were elevated in most cancers, with high expression associated with poorer overall and disease-free survival. METTL3 levels were significantly related to immune cell infiltration, tumor mutation burden, microsatellite instability, mismatch repair genes, and immune checkpoint gene levels. METTL3 was enriched in pathways related to RNA modification and metabolism and correlated with epithelial-mesenchymal transition. Conclusions: METTL3 serves as an oncogene in most cancer types and shows potential as a prognostic biomarker. Additionally, our comprehensive pan-cancer analysis suggested that METTL3 is involved in regulating the tumor immune microenvironments and epithelial-mesenchymal transition via modulating RNA modification and metabolism, making it a potential therapeutic target.
Project description:BackgroundPrevious research suggested that ETS1 (ETS proto-oncogene 1, transcription factor) could be useful for cancer immunotherapy. The processes underlying its therapeutic potential, on the other hand, have yet to be thoroughly investigated. The purpose of this study was to look into the relationship between ETS1 expression and immunity.MethodsTCGA and GEO provide raw data on 33 different cancers as well as GSE67501, GSE78220, and IMvigor210. In addition, we looked at ETS1's genetic changes, expression patterns, and survival studies. The linkages between ETS1 and TME, as well as its association with immunological processes/elements and the major histocompatibility complex, were explored to effectively understand the role of ETS1 in cancer immunotherapy. Three distinct immunotherapeutic cohorts were employed to examine the relationship between ETS1 and immunotherapeutic response.ResultsETS1 expression was shown to be high in tumor tissue. ETS1 overexpression is linked to a worse clinical outcome in individuals with overall survival. Immune cell infiltration, immunological modulators, and immunotherapeutic signs are all linked to ETS1. Overexpression of ETS1 is linked to immune-related pathways. However, no statistically significant link was found between ETS1 and immunotherapeutic response.ConclusionsETS1 may be a reliable biomarker for tumor prognosis and a viable prospective therapeutic target for human cancer immunotherapy (e.g., KIRP, MESO, BLCA, KIRC, and THYM).
Project description:Emerging evidence has revealed the significant roles of nicotinamide n-methyltransferase (NNMT) in cancer initiation, development, and progression; however, a pan-cancer analysis of NNMT has not been conducted. In this study, we first thoroughly investigated the expression and prognostic significance of NNMT and the relationship between NNMT and the tumor microenvironment using bioinformatic analysis. NNMT was significantly increased and associated with poor prognosis in many common cancers. NNMT expression correlated with the infiltration levels of cancer-associated fibroblasts and macrophages in pan-cancer. Function enrichment analysis discovered that NNMT related to cancer-promoting and immune pathways in various common cancers, such as colon adenocarcinoma, head and neck squamous cell carcinoma, ovarian serous cystadenocarcinoma, and stomach adenocarcinoma. NNMT expression was positively correlated with tumor-associated macrophages (TAMs), especially M2-like TAMs. The results suggest that NNMT might be a new biomarker for immune infiltration and poor prognosis in cancers, providing new direction on therapeutics of cancers.