Unknown

Dataset Information

0

In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation.


ABSTRACT: In situ muon spin relaxation is demonstrated as an emerging technique that can provide a volume-averaged local probe of the ionic diffusion processes occurring within electrochemical energy storage devices as a function of state of charge. Herein, we present work on the conceptually interesting NASICON-type all-solid-state battery LiM2(PO4)3, using M = Ti in the cathode, M = Zr in the electrolyte, and a Li metal anode. The pristine materials are studied individually and found to possess low ionic hopping activation energies of ?50-60 meV and competitive Li+ self-diffusion coefficients of ?10-10-10-9 cm2 s-1 at 336 K. Lattice matching of the cathode and electrolyte crystal structures is employed for the all-solid-state battery to enhance Li+ diffusion between the components in an attempt to minimize interfacial resistance. The cell is examined by in situ muon spin relaxation, providing the first example of such ionic diffusion measurements. This technique presents an opportunity to the materials community to observe intrinsic ionic dynamics and electrochemical behavior simultaneously in a nondestructive manner.

SUBMITTER: McClelland I 

PROVIDER: S-EPMC7903674 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

In Situ Diffusion Measurements of a NASICON-Structured All-Solid-State Battery Using Muon Spin Relaxation.

McClelland Innes I   Booth Samuel G SG   El-Shinawi Hany H   Johnston Beth I J BIJ   Clough Jasmin J   Guo Weimin W   Cussen Edmund J EJ   Baker Peter J PJ   Corr Serena A SA  

ACS applied energy materials 20210121 2


In situ muon spin relaxation is demonstrated as an emerging technique that can provide a volume-averaged local probe of the ionic diffusion processes occurring within electrochemical energy storage devices as a function of state of charge. Herein, we present work on the conceptually interesting NASICON-type all-solid-state battery LiM<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, using M = Ti in the cathode, M = Zr in the electrolyte, and a Li metal anode. The pristine materials are studied individua  ...[more]

Similar Datasets

| S-EPMC4541317 | biostudies-other
| S-EPMC9945929 | biostudies-literature
| S-EPMC6399229 | biostudies-literature
| S-EPMC4822167 | biostudies-other
| S-EPMC6660209 | biostudies-literature
| S-EPMC4744977 | biostudies-literature
| S-EPMC3804414 | biostudies-literature
| S-EPMC6651803 | biostudies-other
| S-EPMC5555840 | biostudies-literature
| S-EPMC2581927 | biostudies-literature