Tuning the Nanoporous Structure of Carbons Derived from the Composite of Cross-Linked Polymers for Charge Storage Applications.
Ontology highlight
ABSTRACT: Controlling the porosity of carbon-based electrodes is key toward performance improvement of charge storage devices, e.g., supercapacitors, which deliver high power via fast charge/discharge of ions at the electrical double layer (EDL). Here, eco-friendly preparation of carbons with adaptable nanopores from polymers obtained via microwave-assisted cross-linking of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) is reported. The polymeric hydrogels possess porous and foam-like structures, giving excellent control of porosity at the precursor level, which are then subjected to activation at high temperatures of 700-900 °C to prepare carbons with a surface area of 1846 m2 g-1 and uniform distribution of micro-, meso-, and macropores. Then, graphene as an additive to hydrogel precursor improves the surface characteristics and elaborates porous texture, giving composite materials with a surface area of 3107 m2 g-1. These carbons show an interconnected porous structure and bimodal pore size distribution suitable for facile ionic transport. When implemented in symmetric supercapacitor configuration with aqueous 5 mol L-1 NaNO3 electrolyte, a capacitance of 163 F g-1 (per average mass of one electrode) and stable evolution of capacitance, coulombic, and energy efficiency during 10?000 galvanostatic charge/discharge up to 1.6 V at 1.0 A g-1 have been achieved.
SUBMITTER: Barzegar F
PROVIDER: S-EPMC7903703 | biostudies-literature | 2021 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA