Unknown

Dataset Information

0

DNA primase subunit 1 deteriorated progression of hepatocellular carcinoma by activating AKT/mTOR signaling and UBE2C-mediated P53 ubiquitination.


ABSTRACT:

Background

DNA primase subunit 1 (PRIM1) has been reported as a novel oncogene in several cancer types. However, its roles in hepatocellular carcinoma (HCC) remain unclear. This study aimed to investigate underlying mechanisms of PRIM1 and identify it as a potential molecular target for HCC.

Methods

Hub genes were screened between HCC tissues and normal liver tissues in 3 gene expression omnibus (GEO) datasets and the cancer genome atlas (TCGA). The expression features and prognostic value of one of the hub genes PRIM1 were analyzed by bioinformatic analyses and immunohistochemistry. Loss-of-function and gain-of-function studies were used to investigate the regulatory role of PRIM1 in HCC cells. Real-time (RT)-qPCR, western blotting, and ubiquitin immunoprecipitation assays were performed to explore the underlying mechanisms. The xenograft model was employed to detect the roles of PRIM1 in tumor growth in vivo. Finally, the 3D spheroid model was conducted to validate the role of PRIM1 in tumor growth and sorafenib resistance.

Results

The hub genes of HCC were screened in multiple bioinformatic datasets. PRIM1, as one of the hub genes, was significantly overexpressed in HCC tissues in mRNA and protein levels. In addition, high expression of PRIM1 indicated poor prognosis of HCC patients in TCGA, ICGC, and Nantong cohorts. Overexpression of PRIM1 promoted the proliferation, migration/invasion, and sorafenib resistance of HCC cells, with the decrease in apoptosis and cell cycle arrest. Mechanically, PRIM1 facilitated epithelial-mesenchymal transition (EMT) process and the activity of PI3K/AKT/mTOR signaling of HCC cells. Additionally, PRIM1 could cause the ubiquitination and degradation of P53 by upregulating Ubiquitin Conjugating Enzyme E2 C (UBE2C). Furthermore, knockdown of PRIM1 significantly inhibited the growth of xenograft tumors and HCC cells-derived spheroids with enhanced sorafenib resistance.

Conclusion

This study implies that PRIM1 may play a key role in the progression of HCC and may serve as a potential target for HCC treatment.

SUBMITTER: Zhu M 

PROVIDER: S-EPMC7903777 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

DNA primase subunit 1 deteriorated progression of hepatocellular carcinoma by activating AKT/mTOR signaling and UBE2C-mediated P53 ubiquitination.

Zhu Mengqi M   Wu Mengna M   Bian Saiyan S   Song Qianqian Q   Xiao Mingbing M   Huang Hua H   You Li L   Zhang Jianping J   Zhang Jie J   Cheng Chun C   Ni Wenkai W   Zheng Wenjie W   Zheng Wenjie W  

Cell & bioscience 20210223 1


<h4>Background</h4>DNA primase subunit 1 (PRIM1) has been reported as a novel oncogene in several cancer types. However, its roles in hepatocellular carcinoma (HCC) remain unclear. This study aimed to investigate underlying mechanisms of PRIM1 and identify it as a potential molecular target for HCC.<h4>Methods</h4>Hub genes were screened between HCC tissues and normal liver tissues in 3 gene expression omnibus (GEO) datasets and the cancer genome atlas (TCGA). The expression features and prognos  ...[more]

Similar Datasets

| S-EPMC8654430 | biostudies-literature
| S-EPMC9102726 | biostudies-literature
| S-EPMC4115286 | biostudies-literature
| S-EPMC7463366 | biostudies-literature
| S-EPMC8176587 | biostudies-literature
| S-EPMC10834962 | biostudies-literature
| S-EPMC10367559 | biostudies-literature
| S-EPMC8632823 | biostudies-literature
| S-EPMC7648049 | biostudies-literature
| S-EPMC8615614 | biostudies-literature