Unknown

Dataset Information

0

Evolution of Plant Na+-P-Type ATPases: From Saline Environments to Land Colonization.


ABSTRACT: Soil salinity is one of the major factors obstructing the growth and development of agricultural crops. Eukaryotes have two main transport systems involved in active Na+ removal: cation/H+ antiporters and Na+-P-type ATPases. Key transport proteins, Na+/K+-P-ATPases, are widely distributed among the different taxa families of pumps which are responsible for keeping cytosolic Na+ concentrations below toxic levels. Na+/K+-P-ATPases are considered to be absent in flowering plants. The data presented here are a complete inventory of P-type Na+/K+-P-ATPases in the major branches of the plant kingdom. We also attempt to elucidate the evolution of these important membrane pumps in plants in comparison with other organisms. We were able to observe the gradual replacement of the Na+-binding site to the Ca2+-binding site, starting with cyanobacteria and moving to modern land plants. Our results show that the ?-subunit likely evolved from one common ancestor to bacteria, fungi, plants, and mammals, whereas the ?-subunit did not evolve in green algae. In conclusion, our results strongly suggest the significant differences in the domain architecture and subunit composition of plant Na+/K+-P-ATPases depending on plant taxa and the salinity of the environment. The obtained data clarified and broadened the current views on the evolution of Na+/K+-P-ATPases. The results of this work would be helpful for further research on P-type ATPase functionality and physiological roles.

SUBMITTER: Dabravolski SA 

PROVIDER: S-EPMC7911474 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evolution of Plant Na<sup>+</sup>-P-Type ATPases: From Saline Environments to Land Colonization.

Dabravolski Siarhei A SA   Isayenkov Stanislav V SV  

Plants (Basel, Switzerland) 20210124 2


Soil salinity is one of the major factors obstructing the growth and development of agricultural crops. Eukaryotes have two main transport systems involved in active Na<sup>+</sup> removal: cation/H<sup>+</sup> antiporters and Na<sup>+</sup>-P-type ATPases. Key transport proteins, Na<sup>+</sup>/K<sup>+</sup>-P-ATPases, are widely distributed among the different taxa families of pumps which are responsible for keeping cytosolic Na<sup>+</sup> concentrations below toxic levels. Na<sup>+</sup>/K<s  ...[more]

Similar Datasets

| S-EPMC3355532 | biostudies-literature
2021-12-31 | GSE155419 | GEO
| S-EPMC5011734 | biostudies-literature
| S-EPMC5877938 | biostudies-literature
| S-EPMC3399122 | biostudies-literature
| S-EPMC3493653 | biostudies-literature
| S-EPMC7027989 | biostudies-literature
| S-EPMC5638080 | biostudies-literature
| S-EPMC4071528 | biostudies-literature
| S-EPMC4925925 | biostudies-literature