Unknown

Dataset Information

0

Study on mechanical properties and permeability of elliptical porous scaffold based on the SLM manufactured medical Ti6Al4V.


ABSTRACT: In this paper, we take the elliptical pore structure which is similar to the microstructure of cancellous bone as the research object, four groups of bone scaffolds were designed from the perspective of pore size, porosity and pore distribution. The size of the all scaffolds were uniformly designed as 10 × 10 × 12 mm. Four groups of model samples were prepared by selective laser melting (SLM) and Ti6Al4V materials. The statics performance of the scaffolds was comprehensively evaluated by mechanical compression simulation and mechanical compression test, the manufacturing error of the scaffold samples were evaluated by scanning electron microscope (SEM), and the permeability of the scaffolds were predicted and evaluated by simulation analysis of computational fluid dynamics (CFD). The results show that the different distribution of porosity, pore size and pores of the elliptical scaffold have a certain influence on the mechanical properties and permeability of the scaffold, and the reasonable size and angle distribution of the elliptical pore can match the mechanical properties and permeability of the elliptical pore scaffold with human cancellous bone, which has great potential for research and application in the field of artificial bone scaffold.

SUBMITTER: Shi C 

PROVIDER: S-EPMC7932120 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Study on mechanical properties and permeability of elliptical porous scaffold based on the SLM manufactured medical Ti6Al4V.

Shi Chenglong C   Lu Nana N   Qin Yaru Y   Liu Mingdi M   Li Hongxia H   Li Haichao H  

PloS one 20210304 3


In this paper, we take the elliptical pore structure which is similar to the microstructure of cancellous bone as the research object, four groups of bone scaffolds were designed from the perspective of pore size, porosity and pore distribution. The size of the all scaffolds were uniformly designed as 10 × 10 × 12 mm. Four groups of model samples were prepared by selective laser melting (SLM) and Ti6Al4V materials. The statics performance of the scaffolds was comprehensively evaluated by mechani  ...[more]

Similar Datasets

| S-EPMC8448581 | biostudies-literature
| S-EPMC5452834 | biostudies-other
| S-EPMC7026279 | biostudies-literature
| S-EPMC7321598 | biostudies-literature
| S-EPMC9319900 | biostudies-literature
| S-EPMC6316947 | biostudies-other
| S-EPMC7462274 | biostudies-literature
| S-EPMC9658864 | biostudies-literature
| S-EPMC9920716 | biostudies-literature
| S-EPMC5509007 | biostudies-other