Unknown

Dataset Information

0

Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination.


ABSTRACT: Polyvinylidene fluoride (PVDF) blended with varying concentrations of titanium nanotubes (TNT) was electrospun to result in a nanocomposite filter media. Sandwich structures were obtained by depositing the electrospun fibers between polypropylene (PP) nonwoven sheets. The synthesized tubular TNT was confirmed for its morphology through a transmission electron microscope (TEM). The prepared filter media was analyzed through a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The effectiveness of the filter media was evaluated through the zone of inhibition and antibacterial activity against E. coli and S. aureus. The Box-Behnken design is experimented with three-level variables, namely areal density of substrate (GSM), electrospinning time (hours), and concentration of TNT (wt%) for investigating the bacterial filtration efficiency through an Andersen sampler. Among other statistical tests (STATs), PVDF + 15 wt% TNT has a bacterial filtration efficiency of 99.88% providing greater potentials upon application for clean air management. It can be noted that the future application of this formulation could be efficient filtration of other microbes and could be used in facemasks to industrial-scale air filters. Graphical abstract.

SUBMITTER: Victor FS 

PROVIDER: S-EPMC7955700 | biostudies-literature | 2021 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination.

Victor Felix Swamidoss FS   Kugarajah Vaidhegi V   Bangaru Mohan M   Ranjan Shivendu S   Dharmalingam Sangeetha S  

Environmental science and pollution research international 20210313 28


Polyvinylidene fluoride (PVDF) blended with varying concentrations of titanium nanotubes (TNT) was electrospun to result in a nanocomposite filter media. Sandwich structures were obtained by depositing the electrospun fibers between polypropylene (PP) nonwoven sheets. The synthesized tubular TNT was confirmed for its morphology through a transmission electron microscope (TEM). The prepared filter media was analyzed through a scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier in  ...[more]

Similar Datasets

| S-EPMC7497623 | biostudies-literature
| S-EPMC7601985 | biostudies-literature
| S-EPMC9878976 | biostudies-literature
| S-EPMC5510728 | biostudies-literature
| S-EPMC9268360 | biostudies-literature
| S-EPMC10496027 | biostudies-literature
| S-EPMC9280763 | biostudies-literature
| S-EPMC8465373 | biostudies-literature
| S-EPMC6645287 | biostudies-literature
| S-EPMC4312223 | biostudies-literature