Unknown

Dataset Information

0

Methylselenol Produced In Vivo from Methylseleninic Acid or Dimethyl Diselenide Induces Toxic Protein Aggregation in Saccharomyces cerevisiae.


ABSTRACT: Methylselenol (MeSeH) has been suggested to be a critical metabolite for anticancer activity of selenium, although the mechanisms underlying its activity remain to be fully established. The aim of this study was to identify metabolic pathways of MeSeH in Saccharomyces cerevisiae to decipher the mechanism of its toxicity. We first investigated in vitro the formation of MeSeH from methylseleninic acid (MSeA) or dimethyldiselenide. Determination of the equilibrium and rate constants of the reactions between glutathione (GSH) and these MeSeH precursors indicates that in the conditions that prevail in vivo, GSH can reduce the major part of MSeA or dimethyldiselenide into MeSeH. MeSeH can also be enzymatically produced by glutathione reductase or thioredoxin/thioredoxin reductase. Studies on the toxicity of MeSeH precursors (MSeA, dimethyldiselenide or a mixture of MSeA and GSH) in S.cerevisiae revealed that cytotoxicity and selenomethionine content were severely reduced in a met17 mutant devoid of O-acetylhomoserine sulfhydrylase. This suggests conversion of MeSeH into selenomethionine by this enzyme. Protein aggregation was observed in wild-type but not in met17 cells. Altogether, our findings support the view that MeSeH is toxic in S. cerevisiae because it is metabolized into selenomethionine which, in turn, induces toxic protein aggregation.

SUBMITTER: Dauplais M 

PROVIDER: S-EPMC7956261 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Methylselenol Produced In Vivo from Methylseleninic Acid or Dimethyl Diselenide Induces Toxic Protein Aggregation in <i>Saccharomyces cerevisiae</i>.

Dauplais Marc M   Bierla Katarzyna K   Maizeray Coralie C   Lestini Roxane R   Lobinski Ryszard R   Plateau Pierre P   Szpunar Joanna J   Lazard Myriam M  

International journal of molecular sciences 20210224 5


Methylselenol (MeSeH) has been suggested to be a critical metabolite for anticancer activity of selenium, although the mechanisms underlying its activity remain to be fully established. The aim of this study was to identify metabolic pathways of MeSeH in <i>Saccharomyces cerevisiae</i> to decipher the mechanism of its toxicity. We first investigated in vitro the formation of MeSeH from methylseleninic acid (MSeA) or dimethyldiselenide. Determination of the equilibrium and rate constants of the r  ...[more]

Similar Datasets

| S-EPMC4363601 | biostudies-literature
| S-EPMC2262993 | biostudies-literature
| S-EPMC5453934 | biostudies-literature
| S-EPMC5355996 | biostudies-literature
| S-EPMC5517628 | biostudies-literature
| S-EPMC1783779 | biostudies-literature
| S-EPMC3262967 | biostudies-literature
| S-EPMC6054465 | biostudies-literature
| S-EPMC4120196 | biostudies-literature
| S-EPMC5832320 | biostudies-literature