Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve in humans. Spike protein mutations increase transmission and potentially evade antibodies raised against the original sequence used in current vaccines. Our evaluation of serum neutralizing activity in both persons soon after SARS-CoV-2 infection (in April 2020 or earlier) or vaccination without prior infection confirmed that common spike mutations can reduce antibody antiviral activity. However, when the persons with prior infection were subsequently vaccinated, their antibodies attained an apparent biologic ceiling of neutralizing potency against all tested variants, equivalent to the original spike sequence. These findings indicate that additional antigenic exposure further improves antibody efficacy against variants. IMPORTANCE As SARS-CoV-2 evolves to become better suited for circulating in humans, mutations have occurred in the spike protein it uses for attaching to cells it infects. Protective antibodies from prior infection or vaccination target the spike protein to interfere with its function. These mutations can reduce the efficacy of antibodies generated against the original spike sequence, raising concerns for reinfections and vaccine failures, because current vaccines contain the original sequence. In this study, we tested antibodies from people infected early in the pandemic (before spike variants started circulating) or people who were vaccinated without prior infection. We confirmed that some mutations reduce the ability of antibodies to neutralize the spike protein, whether the antibodies were from past infection or vaccination. Upon retesting the previously infected persons after vaccination, their antibodies gained the same ability to neutralize mutated spike as the original spike, suggesting that the combination of infection and vaccination drove the production of enhanced antibodies to reach a maximal level of potency. Whether this can be accomplished by vaccination alone remains to be determined, but the results suggest that booster vaccinations may help improve efficacy against spike variants through improving not only antibody quantity, but also quality.
Project description:BackgroundImmunity after SARS-CoV-2 infection or vaccination has been threatened by recently emerged SARS-CoV-2 variants. A systematic summary of the landscape of neutralizing antibodies against emerging variants is needed.MethodsWe systematically searched PubMed, Embase, Web of Science, and 3 pre-print servers for studies that evaluated neutralizing antibodies titers induced by previous infection or vaccination against SARS-CoV-2 variants and comprehensively collected individual data. We calculated lineage-specific GMTs across different study participants and types of neutralization assays.FindingsWe identified 56 studies, including 2,483 individuals and 8,590 neutralization tests, meeting the eligibility criteria. Compared with lineage B, we estimate a 1.5-fold (95% CI: 1.0-2.2) reduction in neutralization against the B.1.1.7, 8.7-fold (95% CI: 6.5-11.7) reduction against B.1.351 and 5.0-fold (95% CI: 4.0-6.2) reduction against P.1. The estimated neutralization reductions for B.1.351 compared to lineage B were 240.2-fold (95% CI: 124.0-465.6) reduction for non-replicating vector platform, 4.6-fold (95% CI: 4.0-5.2) reduction for RNA platform, and 1.6-fold (95% CI: 1.2-2.1) reduction for protein subunit platform. The neutralizing antibodies induced by administration of inactivated vaccines and mRNA vaccines against lineage P.1 were also remarkably reduced by an average of 5.9-fold (95% CI: 3.7-9.3) and 1.5-fold (95% CI: 1.2-1.9).InterpretationOur findings indicate that the antibody response established by natural infection or vaccination might be able to effectively neutralize B.1.1.7, but neutralizing titers against B.1.351 and P.1 suffered large reductions. Standardized protocols for neutralization assays, as well as updating immune-based prevention and treatment, are needed.FundingChinese National Science Fund for Distinguished Young Scholars.
Project description:The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here we report the rapid identification of SARS-CoV-2 neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients.
Project description:The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have become a major concern in the containment of current pandemic. The variants, including B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta) have shown reduced sensitivity to monoclonal antibodies, plasma and/or sera obtained from convalescent patients and vaccinated individuals. Development of potent therapeutic monoclonal antibodies (mAbs) with broad neutralizing breadth have become a priority for alleviating the devastating effects of this pandemic. Here, we review some of the most promising broadly neutralizing antibodies obtained from plasma of patients that recovered from early variants of SARS-CoV-2 that may be effective against emerging new variants of the virus. This review summarizes several mAbs, that have been discovered to cross-neutralize across Sarbecoviruses and SARS-CoV-2 escape mutants. Understanding the characteristics that confer this broad and cross-neutralization functions of these mAbs would inform on the development of therapeutic antibodies and guide the discovery of second-generation vaccines.
Project description:Immune response induced by COVID-19 vaccine booster against delta and omicron variants was assessed in 65 adults (65-84 years old) early aftesr a first booster dose. An increase in SARS-CoV-2 neutralizing antibodies was shown in individuals not previously infected without evidence of an age-related effect, with lower increase in those infected before a single dose of primary vaccination. Of note, humoral response was observed only starting from the 5th day after the boost.
Project description:The emergence of new SARS-CoV-2 variants represents a constant threat to world public health. The SARS-CoV-2 Delta variant was identified in late 2020 in India; since then, it has spread to many other countries, replacing other predominant lineages and raising concerns about vaccination efficiency. We evaluated the sensitivity of the Delta variant to antibodies elicited by COVID-19 vaccinated (CoronaVac and ChAdOx1) and convalescent individuals previously infected by earlier lineages and by the Gamma variant. No reduction in the neutralizing efficacy of the Delta variant was observed when compared to B lineage and a reduced neutralization was observed for the Gamma variant. Our results indicate that neutralization of the Delta variant is not compromised in individuals vaccinated by CoronaVac or ChAdOx1; however, a reduction in neutralization efficacy is expected for individuals infected by the Gamma variant, highlighting the importance of continuous vaccination even for previously infected individuals.
Project description:The recent emergence of the SARS-CoV-2 Omicron variant is raising concerns because of its increased transmissibility and its numerous spike mutations, which have the potential to evade neutralizing antibodies elicited by COVID-19 vaccines. Here we evaluated the effects of a heterologous BNT162b2 mRNA vaccine booster on the humoral immunity of participants who had received a two-dose regimen of CoronaVac, an inactivated vaccine used globally. We found that a heterologous CoronaVac prime vaccination of two doses followed by a BNT162b2 booster induces elevated virus-specific antibody levels and potent neutralization activity against the ancestral virus and the Delta variant, resembling the titers obtained after two doses of mRNA vaccines. Although neutralization of Omicron was undetectable in participants who had received a two-dose regimen of CoronaVac, the BNT162b2 booster resulted in a 1.4-fold increase in neutralization activity against Omicron compared with the two-dose mRNA vaccine. Despite this increase, neutralizing antibody titers were reduced by 7.1-fold and 3.6-fold for Omicron compared with the ancestral strain and the Delta variant, respectively. These findings have immediate implications for multiple countries that previously used a CoronaVac regimen and reinforce the idea that the Omicron variant is associated with immune escape from vaccines or infection-induced immunity, highlighting the global need for vaccine boosters to combat the impact of emerging variants.
Project description:We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase-receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.