Unknown

Dataset Information

0

S-nitrosylated TDP-43 triggers aggregation, cell-to-cell spread, and neurotoxicity in hiPSCs and in vivo models of ALS/FTD.


ABSTRACT: Rare genetic mutations result in aggregation and spreading of cognate proteins in neurodegenerative disorders; however, in the absence of mutation (i.e., in the vast majority of "sporadic" cases), mechanisms for protein misfolding/aggregation remain largely unknown. Here, we show environmentally induced nitrosative stress triggers protein aggregation and cell-to-cell spread. In patient brains with amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), aggregation of the RNA-binding protein TDP-43 constitutes a major component of aberrant cytoplasmic inclusions. We identify a pathological signaling cascade whereby reactive nitrogen species cause S-nitrosylation of TDP-43 (forming SNO-TDP-43) to facilitate disulfide linkage and consequent TDP-43 aggregation. Similar pathological SNO-TDP-43 levels occur in postmortem human FTD/ALS brains and in cell-based models, including human-induced pluripotent stem cell (hiPSC)-derived neurons. Aggregated TDP-43 triggers additional nitrosative stress, representing positive feed forward leading to further SNO-TDP-43 formation and disulfide-linked oligomerization/aggregation. Critically, we show that these redox reactions facilitate cell spreading in vivo and interfere with the TDP-43 RNA-binding activity, affecting SNMT1 and phospho-(p)CREB levels, thus contributing to neuronal damage in ALS/FTD disorders.

SUBMITTER: Pirie E 

PROVIDER: S-EPMC7980404 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6728177 | biostudies-literature
| S-EPMC10849503 | biostudies-literature
| S-EPMC8891019 | biostudies-literature
| S-EPMC9587158 | biostudies-literature
| S-EPMC4825810 | biostudies-literature
| S-EPMC6243235 | biostudies-literature
| S-EPMC11325748 | biostudies-literature
| S-EPMC5800968 | biostudies-literature
| S-EPMC10878965 | biostudies-literature
| S-EPMC11186765 | biostudies-literature