Project description:Fractional flow reserve (FFR)-guided percutaneous coronary intervention has shown favorable long-term clinical outcomes. However, limited data exist evaluating the FFR assessment among the chronic kidney disease (CKD) population. The aim of this study was to evaluate the long-term clinical outcomes of FFR-guided coronary revascularization in patients with CKD. A total of 242 CKD patients who underwent FFR assessment were retrospectively analyzed. Patients were divided into two groups: revascularization (FFR ≤ 0.80) and non-revascularization (FFR > 0.80). The primary endpoint was the composite of cardiac death, non-fatal myocardial infarction, and target vessel failure (TVF). The key secondary endpoint was TVF. The Cox regression model was used for risk evaluation. With 91% of the ischemic vessels revascularized, the revascularization group had higher risks for both the primary endpoint (adjusted hazard ratio [aHR]: 2.06; 95% confidence interval [CI], 1.07-3.97; p = 0.030) and key secondary endpoint (aHR: 2.19, 95% CI: 1.10-4.37; p = 0.026), during a median follow-up of 2.9 years. This result was consistent among different CKD severities. In patients with CKD, functional ischemia in coronary artery stenosis was associated with poor clinical outcomes despite coronary revascularization.
Project description:BackgroundThe long-term prognostic implications of fractional flow reserve (FFR)-negative lesions hosting vulnerable plaques remain unsettled.AimsThe aim of this study was to evaluate the association of non-ischaemic lesions hosting optical coherence tomography (OCT)-detected thin-cap fibroatheromas (TCFA) with first and recurrent cardiovascular events during follow-up up to 5 years in a diabetes mellitus (DM) patient population.MethodsCOMBINE OCT-FFR is a prospective, international, double-blind, natural history study. Patients with DM and with ≥1 FFR-negative lesion were classified into 2 groups based on the presence or absence of ≥1 TCFA lesion. The primary endpoint (PE) is a composite of cardiac mortality, target vessel-related myocardial infarction (TV-MI), clinically driven target lesion revascularisation (TLR), or unstable angina (UA) requiring hospitalisation during follow-up up to 5 years.ResultsAmong 390 DM patients (age 67.5±9 years; 37% female) with ≥1 FFR-negative lesion, 292 (74.9%) were TCFA-negative while 98 (25.1%) were TCFA-positive. The PE occurred more frequently in TCFA-positive than in TCFA-negative patients (21.4% vs 8.2%, hazard ratio [HR] 2.89, 95% confidence interval [CI]: 1.61-5.20; p<0.001; 6.42 vs 2.46 events per 100 patient-years, rate ratio [RR] 2.61, 95% CI: 1.38-4.90; p=0.002). Furthermore, when TV-MI, TLR, and UA were treated as recurrent components of the PE, TCFA-positive patients experienced a higher risk of recurrent events (HR 2.89, 95% CI; 1.74-4.80; p<0.001; 13.45 vs 2.87 events per 100 patient-years, RR 4.69, 95% CI: 2.86-7.83; p<0.001). A multivariable analysis identified the presence of TCFA as an independent predictor of the PE (HR 2.76, 95% CI: 1.53-4.97; p<0.001).ConclusionsOCT-detected TCFA-positive lesions, although not ischaemia-generating, are associated with an increased risk of adverse events during long-term follow-up.Clinicaltrialsgov: NCT02989740.
Project description:Fractional flow reserve (FFR) is a reference invasive diagnostic test to assess the physiological significance of an epicardial coronary artery stenosis. FFR-guided percutaneous coronary intervention in stable coronary artery disease has been assessed in three seminal clinical trials and the indications for FFR assessment are expanding into other clinical scenarios. In this article we review the theoretical, experimental and clinical basis for FFR measurement. We place FFR measurement in the context of the comprehensive invasive assessment of coronary physiology in patients presenting with known or suspected angina pectoris in daily clinical practice, and review the recent developments in FFR assessment.
Project description:BackgroundGuidelines on coronary intermediate lesions strongly recommend deferred revascularization after detecting a normal fractional flow reserve (FFR). Researches about triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) on cardiovascular diseases has also been well conducted. However, the association of TG/HDL-C and long-term adverse clinical outcomes remains unknown for patients deferred revascularization following FFR.MethodsThis study retrospectively included 374 coronary artery disease (CAD) patients with non-significant coronary lesions diagnosed by coronary angiography (CAG) and FFR. The main outcome measure was the combination of major adverse cardiovascular and cerebrovascular events (MACCEs). All patients were categorized into three subgroups in terms of TG/HDL-C tertiles (T1 < 0.96, 0.96 ≤ T2 < 1.58, T3 ≥ 1.58). Three different Cox regression models were utilized to reveal the association between TG/HDL-C and prevalence of MACCEs.Results47 MACCEs were recorded throughout a median monitoring period of 6.6 years. The Kaplan-Meier survival curves showed a higher MACCEs rate occurred in the higher TG/HDL-C group (5.6% vs. 12.9% vs. 19.4%, log-rank P < 0.01). After adjustment, patients in T3 suffered a 2.6-fold risk compared to the T1 group (T3 vs. T1: HR 2.55, 95% CI 1.05-6.21, P = 0.038; T2 vs. T1: HR 1.71, 95% CI 0.65-4.49, P = 0.075; P for trend = 0.001). The restricted cubic spline (RCS) analysis demonstrated that the HR for MACCEs rose as TG/HDL-C increased. Both the receiver operating characteristic (ROC) and time-dependent ROC proved the excellent predictive ability of TG/HDL-C.ConclusionThe study illustrates that TG/HDL-C correlates with the risk of MACCEs in CAD patients deferred revascularization following FFR. TG/HDL-C could serve as a dependable predictor of cardiovascular events over the long term in this population.
Project description:AimsA fractional flow reserve (FFR) value ≥0.90 after percutaneous coronary intervention (PCI) is associated with a reduced risk of adverse cardiovascular events. TARGET-FFR is an investigator-initiated, single-centre, randomized controlled trial to determine the feasibility and efficacy of a post-PCI FFR-guided optimization strategy vs. standard coronary angiography in achieving final post-PCI FFR values ≥0.90.Methods and resultsAfter angiographically guided PCI, patients were randomized 1:1 to receive a physiology-guided incremental optimization strategy (PIOS) or a blinded coronary physiology assessment (control group). The primary outcome was the proportion of patients with a final post-PCI FFR ≥0.90. Final FFR ≤0.80 was a prioritized secondary outcome. A total of 260 patients were randomized (131 to PIOS, 129 to control) and 68.1% of patients had an initial post-PCI FFR <0.90. In the PIOS group, 30.5% underwent further intervention (stent post-dilation and/or additional stenting). There was no significant difference in the primary endpoint of the proportion of patients with final post-PCI FFR ≥0.90 between groups (PIOS minus control 10%, 95% confidence interval -1.84 to 21.91, P = 0.099). The proportion of patients with a final FFR ≤0.80 was significantly reduced when compared with the angiography-guided control group (-11.2%, 95% confidence interval -21.87 to -0.35], P = 0.045).ConclusionOver two-thirds of patients had a physiologically suboptimal result after angiography-guided PCI. An FFR-guided optimization strategy did not significantly increase the proportion of patients with a final FFR ≥0.90, but did reduce the proportion of patients with a final FFR ≤0.80.
Project description:Physiologically driven coronary revascularization has been shown to be superior in terms of better outcomes and optimum resource utilization for percutaneous interventions. However, its applicability to surgical myocardial revascularization lacks evidence base. GRAFITTI Trial aims at bridging this gap and Dr. F Casselman discusses its rationale and design.
Project description:IntroductionFractional flow reserve (FFR) is recommended by society guidelines for assessment of the hemodynamic significance of intermediate coronary lesions when non-invasive evidence of myocardial ischemia is unavailable. However, the prevalence of FFR usage in current practice and how FFR values impact revascularization decisions are not well known.MethodsAt a single-center Veterans Administration Hospital, all subjects referred for coronary angiography for any indication from the period from May 2012 until January 2014 were prospectively entered into a database. FFR was measured in all intermediate coronary lesions (30-70% stenosis). Based on the FFR results, the lesions were categorized into 3 different groups: FFR > 0.80 (non-ischemic), FFR 0.75-0.80 (gray zone), and FFR < 0.75 (ischemic).ResultsA total of 1482 cardiac catheterizations were performed during the study period. FFR was performed in 347 (23%) of these procedures. The total numbers of intermediate coronary lesions evaluated with FFR were 429. The mean FFR value was 0.79 (median = 0.80; interquartile range 0.64-0.96). Among 211 non-ischemic lesions, revascularization was deferred in 201 (95%). In the gray-zone group (73 lesions), 35 (48%) lesions were treated with percutaneous coronary intervention (PCI), 11 (15%) lesions were referred for coronary artery bypass grafting surgery (CABG), and 27 (37%) lesions were treated medically. In the ischemic group (145 lesions), 82 (57%) lesions were treated with PCI, 41 (28%) lesions were referred for CABG, and 22 (15%) lesions were treated medically.ConclusionAt a Veterans Administration Hospital, FFR was performed in approximately one out of four total catheterizations. FFR documented lack of ischemia in about half of the intermediate coronary lesions, and thus reduced the need for many revascularization procedures.
Project description:Purpose of reviewAccumulating evidence exists for the value of coronary physiology for clinical decision-making in ischemic heart disease (IHD). The most frequently used pressure-derived index to assess stenosis severity, the fractional flow reserve (FFR), has long been considered the gold standard for this purpose, despite the fact that the FFR assesses solely epicardial stenosis severity and aims to estimate coronary flow impairment in the coronary circulation. The coronary flow reserve (CFR) directly assesses coronary blood flow in the coronary circulation, including both the epicardial coronary artery and the coronary microvasculature, but is nowadays less established than FFR. It is now recognized that both tools may provide insight into the pathophysiological substrate of ischemic heart disease, and that particularly combined FFR and CFR measurements provide a comprehensive insight into the multilevel involvement of IHD. This review discusses the diagnostic and prognostic characteristics, as well as future implications of combined assessment of FFR and CFR pressure and flow measurements as parameters for inducible ischemia.Recent findingsFFR and CFR disagree in up to 40% of all cases, giving rise to fundamental questions regarding the role of FFR in contemporary ischemic heart disease management, and implying a renewed approach in clinical management of these patients using combined coronary pressure and flow measurement to allow appropriate identification of patients at risk for cardiovascular events. This review emphasizes the value of comprehensive coronary physiology measurements in assessing the pathophysiological substrate of IHD, and the importance of acknowledging the broad spectrum of epicardial and microcirculatory involvement in IHD. Increasing interest and large clinical trials are expected to further strengthen the potential of advanced coronary physiology in interventional cardiology, consequently inducing reconsideration of current clinical guidelines.
Project description:Data are limited regarding outcomes of deferred lesions in patients with angiographically insignificant stenosis but low fractional flow reserve (FFR). We investigated the natural history of angiographically insignificant stenosis with low FFR among patients who underwent routine 3-vessel FFR measurement. From December 2011 to March 2014, 1136 patients with 3298 vessels underwent routine 3-vessel FFR measurement (3V FFR-FRIENDS study, ClinicalTrials.gov identifier NCT01621438), and this study analyzed the 2-year clinical outcomes of 1024 patients with 2124 lesions with angiographically insignificant stenosis (percentage of diameter stenosis <50%), in which revascularization was deferred. All lesions were classified according to FFR values, using a cutoff of 0.80 (high FFR >0.80 versus low FFR ≤0.80). The primary end point was outcome of major adverse cardiovascular events (a composite of cardiac death, myocardial infarction, and ischemia-driven revascularization) at 2 years. Mean angiographic percentage of diameter stenosis and FFR of total lesions were 32.5±10.3% and 0.91±0.08%, respectively. Among the total lesions with angiographically insignificant stenosis, 8.7% showed low FFR (185 lesions). The incidence of lesions with low FFR was 2.5%, 3.8%, 9.0%, and 15.1% in categories of percentage of diameter stenosis <20%, 20% to 30%, 30% to 40%, and 40% to 50%, respectively. At 2-year follow-up, the low-FFR group showed a significantly higher risk of major adverse cardiovascular events compared with the high FFR group (3.3% versus 1.2%, hazard ratio: 3.371; 95% CI, 1.346-8.442; P=0.009). In multivariable analysis, low FFR was the most powerful independent predictor of future MACE in deferred lesions with angiographically insignificant stenosis (adjusted hazard ratio: 2.617; 95% CI, 1.026-6.679; P=0.044). In deferred angiographically insignificant stenosis, lesions with low FFR showed significantly higher event rates than those with high FFR. FFR was an independent predictor of future major adverse cardiovascular events in lesions with angiographically insignificant stenosis. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01621438.