Unknown

Dataset Information

0

Asymmetric three-component olefin dicarbofunctionalization enabled by photoredox and copper dual catalysis.


ABSTRACT: The intermolecular three-component alkene vicinal dicarbofunctionalization (DCF) reaction allows installation of two different carbon fragments. Despite extensive investigation into its ionic chemistry, the enantioseletive radical-mediated versions of DCF reactions remain largely unexplored. Herein, we report an intermolecular, enantioselective three-component radical vicinal dicarbofunctionalization reaction of olefins enabled by merger of radical addition and cross-coupling using photoredox and copper dual catalysis. Key to the success of this protocol relies on chemoselective addition of acyl and cyanoalkyl radicals, generated in situ from the redox-active oxime esters by a photocatalytic N-centered iminyl radical-triggered C-C bond cleavage event, onto the alkenes to form new carbon radicals. Single electron metalation of such newly formed carbon radicals to TMSCN-derived L1Cu(II)(CN)2 complex leads to asymmetric cross-coupling. This three-component process proceeds under mild conditions, and tolerates a diverse range of functionalities and synthetic handles, leading to valuable optically active β-cyano ketones and alkyldinitriles, respectively, in a highly enantioselective manner (>60 examples, up to 97% ee).

SUBMITTER: Wang PZ 

PROVIDER: S-EPMC7985521 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7086343 | biostudies-literature
| S-EPMC8163243 | biostudies-literature
| S-EPMC6512806 | biostudies-literature
| S-EPMC7476681 | biostudies-literature
| S-EPMC8179282 | biostudies-literature
| S-EPMC6106865 | biostudies-literature
| S-EPMC5771658 | biostudies-literature
| S-EPMC8179295 | biostudies-literature