Project description:The nsp3 macrodomain is implicated in the viral replication, pathogenesis and host immune responses through the removal of ADP-ribosylation sites during infections of coronaviruses including the SARS-CoV-2. It has ever been modulated by macromolecules including the ADP-ribose until Ni and co-workers recently reported its inhibition and plasticity enhancement unprecedentedly by remdesivir metabolite, GS-441524, creating an opportunity for investigating other biodiverse small molecules such as β-Carboline (βC) alkaloids. In this study, 1497 βC analogues from the HiT2LEAD chemical database were screened, using computational approaches of Glide XP docking, molecular dynamics simulation and pk-CSM ADMET predictions. Selectively, βC ligands, 129, 584, 1303 and 1323 demonstrated higher binding affinities to the receptor, indicated by XP docking scores of -10.72, -10.01, -9.63 and -9.48 kcal/mol respectively than remdesivir and GS-441524 with -4.68 and -9.41 kcal/mol respectively. Consistently, their binding free energies were -36.07, -23.77, -24.07 and -17.76 kcal/mol respectively, while remdesivir and GS-441524 showed -21.22 and -24.20 kcal/mol respectively. Interestingly, the selected βC ligands displayed better stability and flexibility for enhancing the plasticity of the receptor than GS-441524, especially 129 and 1303. Their predicted ADMET parameters favour druggability and low expressions for toxicity. Thus, they are recommended as promising adjuvant/standalone anti-SARS-CoV-2 candidates for further study.Key words: SARS-CoV-2, nsp3 macrodomain, ADP-ribose, β-carboline, bioinformatics, drug design.
Project description:The outbreak of coronavirus disease 2019 (COVID-19) has resulted in a global pandemic due to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the time of this manuscript's publication, remdesivir is the only COVID-19 treatment approved by the United States Food and Drug Administration. However, its effectiveness is still under question due to the results of the large Solidarity Trial conducted by the World Health Organization. Herein, we report that the parent nucleoside of remdesivir, GS-441524, potently inhibits the replication of SARS-CoV-2 in Vero E6 and other cell lines. Challenge studies in both an AAV-hACE2 mouse model of SARS-CoV-2 and in mice infected with murine hepatitis virus, a closely related coronavirus, showed that GS-441524 was highly efficacious in reducing the viral titers in CoV-infected organs without notable toxicity. Our results support that GS-441524 is a promising and inexpensive drug candidate for treating of COVID-19 and other CoV diseases.
Project description:Cases of vaccine breakthrough, especially in variants of concern (VOCs) infections, are emerging in coronavirus disease (COVID-19). Due to mutations of structural proteins (SPs) (e.g., Spike proteins), increased transmissibility and risk of escaping from vaccine-induced immunity have been reported amongst the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Remdesivir was the first to be granted emergency use authorization but showed little impact on survival in patients with severe COVID-19. Remdesivir is a prodrug of the nucleoside analogue GS-441524 which is converted into the active nucleotide triphosphate to disrupt viral genome of the conserved non-structural proteins (NSPs) and thus block viral replication. GS-441524 exerts a number of pharmacological advantages over Remdesivir: (1) it needs fewer conversions for bioactivation to nucleotide triphosphate; (2) it requires only nucleoside kinase, while Remdesivir requires several hepato-renal enzymes, for bioactivation; (3) it is a smaller molecule and has a potency for aerosol and oral administration; (4) it is less toxic allowing higher pulmonary concentrations; (5) it is easier to be synthesized. The current article will focus on the discussion of interactions between GS-441524 and NSPs of VOCs to suggest potential application of GS-441524 in breakthrough SARS-CoV-2 infections.Supplementary informationThe online version contains supplementary material available at 10.1007/s44231-022-00021-4.
Project description:Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.
Project description:Genetic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern/variants of interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV [VEKLURY]) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here, we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein enzyme-linked immunosorbent assay (ELISA) and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with 50% effective concentration (EC50) values 0.30- to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC50 values ranging from 0.13- to 2.3-fold of the observed EC50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants, with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.
Project description:A three-step sequence for preparing remdesivir, an important anti-SARS-CoV-2 drug, is described. Employing N,N-dimethylformamide dimethyl acetal (DMF-DMA) as a protecting agent, this synthesis started from (2R,3R,4S,5R)-2-(4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydro-furan-2-carbonitrile (GS-441524) and consisted of three reactions, including protection, phosphoramidation, and deprotection. The advantages of this approach are as follows: (1) the protecting group could be removed under a mild deprotection condition, which avoided the generation of the degraded impurity; (2) high stereoselectivity was achieved in the phosphorylated reaction; (3) this synthesis could be performed successively without purification of intermediates. Moreover, the overall yield of this approach on a gram scale could be up to 85% with an excellent purity of 99.4% analyzed by high-performance liquid chromatography (HPLC).
Project description:BackgroundRemdesivir is the first antiviral drug against SARS-CoV-2 approved for use in COVID-19 patients.ObjectivesTo study the pharmacokinetic inter-individual variability of remdesivir and its main metabolite GS-441524 in a real-world setting of COVID-19 inpatients and to identify possible associations with different demographic/biochemical variables.MethodsInpatients affected by SARS-CoV-2 infections, undergoing standard-dose remdesivir treatment, were prospectively enrolled. Blood samples were collected on day 4, immediately after (C0) and at 1 h (C1) and 24 h (C24) after infusion. Remdesivir and GS-441524 concentrations were measured using a validated UHPLC-MS/MS method and the AUC0-24 was calculated. At baseline, COVID-19 severity (ICU or no ICU), sex, age, BMI and renal and liver functions were assessed. Transaminases and estimated glomerular filtration rate (e-GFR) were also evaluated during treatment. Linear regression, logistic regression and multiple linear regression tests were used for statistical comparisons of pharmacokinetic parameters and variables.ResultsEighty-five patients were included. The mean (CV%) values of remdesivir were: C0 2091 (99.1%) ng/mL, C1 139.7 (272.4%) ng/mL and AUC0-24 2791 (175.7%) ng·h/mL. The mean (CV%) values of GS-441524 were: C0 90.2 (49.5%) ng/mL, C1 104.9 (46.6%) ng/mL, C24 58.4 (66.9) ng/mL and AUC0-24 1976 (52.6%) ng·h/mL. The multiple regression analysis showed that age (P < 0.05) and e-GFR (P < 0.01) were independent predictors of GS-441524 plasma exposure.ConclusionsOur results showed a high interpatient variability of remdesivir and GS-441524 likely due to both age and renal function in COVID-19 inpatients. Further research is required to understand whether the pharmacokinetics of remdesivir and its metabolites may influence drug-related efficacy or toxic effect.
Project description:The nucleoside metabolite of remdesivir, GS-441524 displays potent anti-SARS-CoV-2 efficacy, and is being evaluated in clinical as an oral antiviral therapeutic for COVID-19. However, this nucleoside has a poor oral bioavailability in non-human primates, which may affect its therapeutic efficacy. Herein, we reported a variety of GS-441524 analogs with modifications on the base or the sugar moiety, as well as some prodrug forms, including five isobutyryl esters, two l-valine esters, and one carbamate. Among the new nucleosides, only the 7-fluoro analog 3c had moderate anti-SARS-CoV-2 activity, and its phosphoramidate prodrug 7 exhibited reduced activity in Vero E6 cells. As for the prodrugs, the 3'-isobutyryl ester 5a, the 5'-isobutyryl ester 5c, and the tri-isobutyryl ester 5g hydrobromide showed excellent oral bioavailabilities (F = 71.6%, 86.6% and 98.7%, respectively) in mice, which provided good insight into the pharmacokinetic optimization of GS-441524.
Project description:Remdesivir, a prodrug of the nucleoside analog GS-441524, plays a key role in the treatment of coronavirus disease 2019 (COVID-19). However, owing to limited information on clinical trials and inexperienced clinical use, there is a lack of pharmacokinetic (PK) data in patients with COVID-19 with special characteristics. In this study, we aimed to measure serum GS-441524 concentrations and develop a population PK (PopPK) model. Remdesivir was administered at a 200 mg loading dose on the first day followed by 100 mg from day 2, based on the package insert, in patients with an estimated glomerular filtration rate (eGFR) greater than or equal to 30 ml/min. In total, 190 concentrations from 37 Japanese patients were used in the analysis. The GS-441524 trough concentrations were significantly higher in the eGFR less than 60 ml/min group than in the eGFR greater than or equal to 60 ml/min group. Extracorporeal membrane oxygenation in four patients hardly affected the total body clearance (CL) and volume of distribution (Vd ) of GS-441524. A one-compartment model described serum GS-441524 concentration data. The CL and Vd of GS-441524 were significantly affected by eGFR readjusted by individual body surface area and age, respectively. Simulations proposed a dose regimen of 200 mg on day 1 followed by 100 mg once every 2 days from day 2 in patients with an eGFR of 30 ml/min or less. In conclusion, we successfully established a PopPK model of GS-441524 using retrospectively obtained serum GS-441524 concentrations in Japanese patients with COVID-19, which would be helpful for optimal individualized therapy of remdesivir.
Project description:Recent international epidemics of coronavirus-associated illnesses underscore the urgent medical and public health need for vaccine development and regulatory body approved therapies. In particular, the current coronavirus disease 2019 (COVID-19) pandemic has quickly intensified interest in developing treatment options to mitigate impact on human life. Remdesivir (GS-5734™) is a broad-spectrum antiviral drug that is now being tested as a potential treatment for COVID-19 in international, multi-site clinical trials. Currently available evidence about the antiviral effects of remdesivir against coronaviruses is primarily based on in vitro and in vivo studies (including some on a chemically related compound, GS-441524™), which have demonstrated largely favorable findings. As the pandemic progresses, information from human compassionate use cases will continue to accumulate before the clinical trials are concluded. It is imperative for public health practitioners and the One Health community to stay up to date on the most promising potential therapeutic options that are under investigation. Thus, the purpose of this review is to synthesize the knowledge to date about remdesivir as a therapeutic option for coronaviruses, with a special focus on information relevant to the One Health community.