Project description:While there is SARS-CoV-2 multiorgan tropism in severely infected COVID-19 patients, it's unclear if this occurs in healthy young individuals. In addition, for antibodies that target the spike protein (SP), it's unclear if these reduce SARS-CoV-2/SP multiorgan tropism equally. We used fluorescently labeled SP-NIRF to study viral behavior, using an in vivo dynamic imaging system and ex in vivo tissue analysis, in young mice. We found a SP body-wide biodistribution followed by a slow regional elimination, except for the liver, which showed an accumulation. SP uptake was highest for the lungs, and this was followed by kidney, heart and liver, but, unlike the choroid plexus, it was not detected in the brain parenchyma or CSF. Thus, the brain vascular barriers were effective in restricting the entry of SP into brain parenchyma in young healthy mice. While both anti-ACE2 and anti-SP antibodies suppressed SP biodistribution and organ uptake, anti-SP antibody was more effective. By extension, our data support the efficacy of these antibodies on SARS-CoV-2 multiorgan tropism, which could determine COVID-19 organ-specific outcomes.
Project description:Pulmonary capillary microthrombosis has been proposed as a major pathogenetic factor driving severe COVID-19. Autopsy studies reported endothelialitis but it is under debate if it is caused by SARS-CoV-2 infection of endothelial cells. In this study, RNA in situ hybridization was used to detect viral RNA and to identify the infected cell types in lung tissue of 40 patients with fatal COVID-19. SARS-CoV-2 Spike protein-coding RNA showed a steadily decreasing signal abundance over a period of three weeks. Besides the original virus strain the variants of concern Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) could also be detected by the assay. Viral RNA was mainly detected in alveolar macrophages and pulmonary epithelial cells, while only single virus-positive endothelial cells were observed even in cases with high viral load suggesting that viral infection of endothelial cells is not a key factor for the development of pulmonary capillary microthrombosis.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has led to an unprecedented public health emergency worldwide. While common cold symptoms are observed in mild cases, COVID-19 is accompanied by multiorgan failure in severe patients. Organ damage in COVID-19 patients is partially associated with the indirect effects of SARS-CoV-2 infection (e.g., systemic inflammation, hypoxic-ischemic damage, coagulopathy), but early processes in COVID-19 patients that trigger a chain of indirect effects are connected with the direct infection of cells by the virus. To understand the virus transmission routes and the reasons for the wide-spectrum of complications and severe outcomes of COVID-19, it is important to identify the cells targeted by SARS-CoV-2. This review summarizes the major steps of investigation and the most recent findings regarding SARS-CoV-2 cellular tropism and the possible connection between the early stages of infection and multiorgan failure in COVID-19. The SARS-CoV-2 pandemic is the first epidemic in which data extracted from single-cell RNA-seq (scRNA-seq) gene expression data sets have been widely used to predict cellular tropism. The analysis presented here indicates that the SARS-CoV-2 cellular tropism predictions are accurate enough for estimating the potential susceptibility of different cells to SARS-CoV-2 infection; however, it appears that not all susceptible cells may be infected in patients with COVID-19.
Project description:Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here we uncover a role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Project description:The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:Severe acute respiratory syndrome coronavirus 2 did not replicate efficiently in 13 bat cell lines, whereas severe acute respiratory syndrome coronavirus replicated efficiently in kidney cells of its ancestral host, the Rhinolophus sinicus bat, suggesting different evolutionary origins. Structural modeling showed that RBD/RsACE2 binding may contribute to the differential cellular tropism.
Project description:HAE cultures were infected with SARS-CoV, SARS-dORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV, SARS-dORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate or quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.
Project description:HAE cultures were infected with SARS-CoV, SARS-ddORF6 or SARS-BatSRBD and were directly compared to A/CA/04/2009 H1N1 influenza-infected cultures. Cell samples were collected at various hours post-infection for analysis. Time Points = 0, 12, 24, 36, 48, 60, 72, 84 and 96 hrs post-infection for SARS-CoV. Time Points = 0, 24, 48, 60, 72, 84 and 96 hrs post-infection forSARS-ddORF6 and SARS-BatSRBD. Time Points = 0, 6, 12, 18, 24, 36 and 48 hrs post-infection for H1N1. Done in triplicate/quadruplicate for RNA Triplicates/quadruplicates are defined as 3/4 different wells, plated at the same time and using the same cell stock for all replicates. Time matched mocks done in triplicate from same cell stock as rest of samples. Culture medium (the same as what the virus stock is in) will be used for the mock infections. Infection was done at an MOI of 2.