Project description:Coronavirus E protein is a small membrane protein found in the virus envelope. Different coronavirus E proteins share striking biochemical and functional similarities, but sequence conservation is limited. In this report, we studied the E protein topology from the new SARS-CoV-2 virus both in microsomal membranes and in mammalian cells. Experimental data reveal that E protein is a single-spanning membrane protein with the N-terminus being translocated across the membrane, while the C-terminus is exposed to the cytoplasmic side (Ntlum/Ctcyt). The defined membrane protein topology of SARS-CoV-2 E protein may provide a useful framework to understand its interaction with other viral and host components and contribute to establish the basis to tackle the pathogenesis of SARS-CoV-2.
Project description:The glycosylated membrane protein M of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) is the main structural component of the virion and mediates assembly and budding of viral particles. The membrane topology of SARS-CoV M and the functional significance of its N-glycosylation are not completely understood as is its interaction with the surface glycoprotein S. Using biochemical and immunofluorescence analyses we found that M consists of a short glycosylated N-terminal ectodomain, three transmembrane segments and a long, immunogenic C-terminal endodomain. Although the N-glycosylation site of M seems to be highly conserved between group 1 and 3 coronaviruses, studies using a recombinant SARS-CoV expressing a glycosylation-deficient M revealed that N-glycosylation of M neither influence the shape of the virions nor their infectivity in cell culture. Further functional analysis of truncated M proteins showed that the N-terminal 134 amino acids comprising the three transmembrane domains are sufficient to mediate accumulation of M in the Golgi complex and to enforce recruitment of the viral spike protein S to the sites of virus assembly and budding in the ERGIC.
Project description:Exterior segments of E-proteins bound onto and modulated gene expression in human vascular endothelial cells in vitro The finding that EC38 segment laid out of SARS-CoV-2 virus envelope prompted us to wonder if this segment would bind onto and impact the biology of host cells. Bearing the viremia during severe COVID-19 in mind, more attention was paid to the circulation system. Cultured human umbilical vein endothelial cells (HUVECs) were used to test the binding of EC38 and MN19 peptides and the potential consequence in terms of gene expression upon such binding. To check if the binding of interest peptides onto HUVEC concurred functional consequences in the cells, HUVECs were treated with EC38 and MN19 peptides (5μM) for 24 hours, and their transcriptome was measured via RNA sequencing.
Project description:A recombinant SARS-CoV lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major virulence determinant in vivo. Elimination of SARS-CoV E protein PBM by using reverse genetics led to attenuated viruses (SARS-CoV-mutPBM) and to a reduction in the deleterious exacerbate immune response triggered during infection with the parental virus (SARS-CoV-wt). Cellular protein syntenin bound E protein PBM during SARS-CoV infection. Syntenin activates p38 MAPK leading to overexpression of inflammatory cytokines, and we have shown that active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM (SARS-CoV-mutPBM) as compared with the parental virus (SARS-CoV-wt), leading to a decreased expression of inflammatory cytokines and to viral attenuation. Therefore, E protein PBM is a virulence factor that activates pathogenic immune response most likely by using syntenin as a mediator of p38 MAPK induced inflammation. Three biological replicates were independently hybridized (one channel per slide) for each sample type (SARS-CoV-wt, SARS-CoV-mutPBM, Mock). Slides were Sure Print G3 Agilent 8x60K Mouse (G4852A-028005)
Project description:BackgroundThe gp41 subunit of the HIV-1 envelope glycoprotein (Env) has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD). An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP) that is only active in the cytoplasm. The tag protein (HaloTag) and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system.ResultsIn the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells) supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells), the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability.ConclusionsIt is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.
Project description:Pandemic coronavirus causes respiratory, enteric and sometimes neurological diseases. Proteome data of individual coronavirus strains were already reported. Here we investigated of SARS-CoV-2 ssRNA and protein of spike, envelope and membrane to determine stress adaptation profile. Thermodynamic properties, Physicochemical behaviour and, amino acid composition along with their RMSD value was analysed. Thermodynamic index of SARS-CoV2 spike, envelope and membrane ssRNA is unstable in higher temperature. Presence of higher proportion of polar with positive and negative charged amino acid residues into spike (S), envelope (E) and membrane (M) protein indicate the lower stress adaptability pattern. Our study represented several unstable pockets into S, E and M proteins of SARS-CoV-2 against different abiotic stresses, specifically higher in spike protein. Contact with heat through solvent may denature the architectural network of SARS-CoV-2 spike, envelope and membrane ssRNA and structural protein. The stress instability index of SARS-CoV-2 and the interactome profile of its transmembrane proteins may help to reveal novel factors for inhibiting SARS-CoV-2 growth.
Project description:The ongoing mutations in the structural proteins of SARS-CoV-2 are the major impediment for prevention and control of the COVID-19 disease. Presently we focused on evolution of the envelope (E) protein, one of the most enigmatic and less studied protein among the four structural proteins (S, E, M and N) associated with multitude of immunopathological functions of SARS-CoV-2. In the present study, we comprehensively analyzed 81,818 high quality E protein sequences of SARS-CoV-2 globally available in the GISAID database as of 20 August 2020. Compared to Wuhan reference strain, our mutational analysis explored only 1.2 % (982/81818) mutant strains undergoing a total of 115 unique amino acid (aa) substitutions in the E protein, highlighting the fact that most (98.8 %) of the E protein of SARS-CoV-2 strains are highly conserved. Moreover, we found 58.77 % (134 of 228) nucleotides (nt) positions of SARS-CoV-2 E gene encountering a total of 176 unique nt-level mutations globally, which may affect the efficacy of real time RT-PCR-based molecular detection of COVID-19. Importantly, higher aa variations observed in the C-terminal domain (CTD) of the E protein, particularly at Ser55-Phe56, Arg69 and the C-terminal end (DLLV: 72-75) may alter the binding of SARS-CoV-2 Envelope protein to tight junction-associated PALS1 and thus could play a key role in COVID-19 pathogenesis. Furthermore, this study revealed the V25A mutation in the transmembrane domain which is a key factor for the homopentameric conformation of E protein. Our analysis also observed a triple cysteine motif harboring mutation (L39M, A41S, A41V, C43F, C43R, C43S, C44Y, N45R) which may hinder the binding of E protein with spike glycoprotein. These results therefore suggest the continuous monitoring of the structural proteins including the envelope protein of SARS-CoV-2 since the number of genome sequences from across the world are continuously increasing.
Project description:The Coronavirus Disease 2019 (COVID-19) is a new viral infection caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2). Genomic analyses have revealed that SARS-CoV-2 is related to Pangolin and Bat coronaviruses. In this report, a structural comparison between the Sars-CoV-2 Envelope and Membrane proteins from different human isolates with homologous proteins from closely related viruses is described. The analyses here reported show the high structural similarity of Envelope and Membrane proteins to the counterparts from Pangolin and Bat coronavirus isolates. However, the comparisons have also highlighted structural differences specific of Sars-CoV-2 proteins which may be correlated to the cross-species transmission and/or to the properties of the virus. Structural modelling has been applied to map the variant sites onto the predicted three-dimensional structure of the Envelope and Membrane proteins.
Project description:A recombinant SARS-CoV lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major virulence determinant in vivo. Elimination of SARS-CoV E protein PBM by using reverse genetics led to attenuated viruses (SARS-CoV-mutPBM) and to a reduction in the deleterious exacerbate immune response triggered during infection with the parental virus (SARS-CoV-wt). Cellular protein syntenin bound E protein PBM during SARS-CoV infection. Syntenin activates p38 MAPK leading to overexpression of inflammatory cytokines, and we have shown that active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM (SARS-CoV-mutPBM) as compared with the parental virus (SARS-CoV-wt), leading to a decreased expression of inflammatory cytokines and to viral attenuation. Therefore, E protein PBM is a virulence factor that activates pathogenic immune response most likely by using syntenin as a mediator of p38 MAPK induced inflammation.