Project description:Dysnatremia is associated with increased mortality in patients with community-acquired pneumonia. SARS-COV2 (Severe-acute-respiratory syndrome caused by Coronavirus-type 2) pneumonia can be fatal. The aim of this study was to ascertain whether admittance dysnatremia is associated with mortality, sepsis, or intensive therapy (IT) in patients hospitalized with SARS-COV2 pneumonia. This is a retrospective study of the HOPE-COVID-19 registry, with data collected from January 1th through April 31th, 2020. We selected all hospitalized adult patients with RT-PCR-confirmed SARS-COV2 pneumonia and a registered admission serum sodium level (SNa). Patients were classified as hyponatremic (SNa <135 mmol/L), eunatremic (SNa 135-145 mmol/L), or hypernatremic (SNa >145 mmol/L). Multivariable analyses were performed to elucidate independent relationships of admission hyponatremia and hypernatremia, with mortality, sepsis, or IT during hospitalization. Four thousand six hundred sixty-four patients were analyzed, median age 66 (52-77), 58% males. Death occurred in 988 (21.2%) patients, sepsis was diagnosed in 551 (12%) and IT in 838 (18.4%). Hyponatremia was present in 957/4,664 (20.5%) patients, and hypernatremia in 174/4,664 (3.7%). Both hyponatremia and hypernatremia were associated with mortality and sepsis. Only hyponatremia was associated with IT. In conclusion, hyponatremia and hypernatremia at admission are factors independently associated with mortality and sepsis in patients hospitalized with SARS-COV2 pneumonia.Clinical trial registrationhttps://clinicaltrials.gov/ct2/show/NCT04334291, NCT04334291.
Project description:ObjectiveTo determine the prevalence of D-dimer elevation in coronavirus disease 2019 (COVID-19) hospitalization, trajectory of D-dimer levels during hospitalization, and its association with clinical outcomes. Approach and Results: Consecutive adults admitted to a large New York City hospital system with a positive polymerase chain reaction test for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) between March 1, 2020 and April 8, 2020 were identified. Elevated D-dimer was defined by the laboratory-specific upper limit of normal (>230 ng/mL). Outcomes included critical illness (intensive care, mechanical ventilation, discharge to hospice, or death), thrombotic events, acute kidney injury, and death during admission. Among 2377 adults hospitalized with COVID-19 and ≥1 D-dimer measurement, 1823 (76%) had elevated D-dimer at presentation. Patients with elevated presenting baseline D-dimer were more likely than those with normal D-dimer to have critical illness (43.9% versus 18.5%; adjusted odds ratio, 2.4 [95% CI, 1.9-3.1]; P<0.001), any thrombotic event (19.4% versus 10.2%; adjusted odds ratio, 1.9 [95% CI, 1.4-2.6]; P<0.001), acute kidney injury (42.4% versus 19.0%; adjusted odds ratio, 2.4 [95% CI, 1.9-3.1]; P<0.001), and death (29.9% versus 10.8%; adjusted odds ratio, 2.1 [95% CI, 1.6-2.9]; P<0.001). Rates of adverse events increased with the magnitude of D-dimer elevation; individuals with presenting D-dimer >2000 ng/mL had the highest risk of critical illness (66%), thrombotic event (37.8%), acute kidney injury (58.3%), and death (47%).ConclusionsAbnormal D-dimer was frequently observed at admission with COVID-19 and was associated with higher incidence of critical illness, thrombotic events, acute kidney injury, and death. The optimal management of patients with elevated D-dimer in COVID-19 requires further study.
Project description:Coronavirus disease 2019 (COVID-19) can be asymptomatic or lead to a wide spectrum of symptoms, ranging from mild upper respiratory system involvement to acute respiratory distress syndrome, multi-organ damage and death. In this study, we explored the potential of microRNAs (miRNA) in delineating patient condition and in predicting clinical outcome. Analysis of the circulating miRNA profile of COVID-19 patients, sampled at different hospitalization intervals after admission, allowed to identify miR-144-3p as a dynamically regulated miRNA in response to COVID-19.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:Background: Systemic inflammation has been associated with severe coronavirus disease 2019 (COVID-19) disease and mortality. Hyponatremia can result from inflammation due to non-osmotic stimuli for vasopressin production. Methods: We prospectively studied 799 patients hospitalized with COVID-19 between March 7 and November 7, 2020, at Hospital Posadas in Buenos Aires, Argentina in order to evaluate the association between hyponatremia, inflammation, and its impact on clinical outcomes. Admission biochemistries, high-sensitivity C-reactive protein (hsCRP), ferritin, patient demographics, and outcome data were recorded. Outcomes (within 30 days after symptoms) evaluated included ICU admission, mechanical ventilation, dialysis-requiring acute kidney injury (AKI), and in-hospital mortality. Length of hospital stay (in days) were evaluated using comprehensive data from the EHR. Results: Hyponatremia (median Na = 133 mmol/L) was present on admission in 366 (45.8%). Hyponatremic patients had higher hsCRP (median 10.3 [IR 4.8-18.4] mg/dl vs. 6.6 [IR 1.6-14.0] mg/dl, p < 0.01) and ferritin levels (median 649 [IQR 492-1,168] ng/dl vs. 393 [IQR 156-1,440] ng/dl, p = 0.02) than normonatremic patients. Hyponatremia was associated with higher odds of an abnormal hsCRP (unadjusted OR 5.03, 95%CI: 2.52-10.03), and remained significant after adjustment for potential confounders (adjusted OR 4.70 [95%CI: 2.33-9.49], p < 0.01). Hyponatremic patients had increased mortality on unadjusted (HR 3.05, 95%CI: 2.14-4.34) and adjusted (HR 2.76, 95%CI:1.88-4.06) in Cox proportional hazard models. Crude 30-day survival was lower for patients with hyponatremia at admission (mean [SD] survival 22.1 [0.70] days) compared with patients who were normonatremic (mean [SD] survival 27.2 [0.40] days, p < 0.01). Conclusion: Mild hyponatremia on admission is common, is associated with systemic inflammation and is an independent risk factor for hospital mortality. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT04493268.
Project description:COVID-19 risk increases with comorbidities, and the effect is magnified due to the contribution of individual and combined comorbidities to the overall clinical outcomes. We aimed to explore the influence of demographic factors, clinical manifestations, and underlying comorbidities on mortality, severity, and hospital stay in COVID-19 patients. Therefore, retrospective chart reviews were performed to identify all laboratory-confirmed cases of SARS-CoV-2 infection in Apollo Hospitals, Hyderabad, between March 2020 and August 2020.A total of 369 confirmed SARS-CoV-2 cases were identified: 272 (73.7%) patients were male, and 97 (26.2%) were female. Of the confirmed cases, 218 (59.1%) had comorbidities, and 151 (40.9%) were devoid of comorbidities. This study showed that old age and underlying comorbidities significantly increase mortality, hospital stay, and severity due to COVID-19 infection. The presence of all four comorbidities, diabetes mellitus (DM) + Hypertension (HTN) + coronary artery disease (CAD) + chronic kidney disease (CKD), conferred the most severity (81%). The highest mortality (OR: 44.03, 95% CI: 8.64-224.27) was observed during the hospital stay (12.73 ± 11.38; 95% CI: 5.08-20.38) in the above group. Multivariate analysis revealed that nonsurvivors are highest (81%) in (DM + HTN + CAD + CKD) category with an odds ratio (95% CI) of 44.03 (8.64-224.27). Age, gender, and comorbidities adjusted odds ratio decreased to 20.25 (3.77-108.77). Median survival of 7 days was observed in the (DM + HTN + CAD + CKD) category. In summary, the presence of underlying comorbidities has contributed to a higher mortality rate, greater risk of severe disease, and extended hospitalization periods, hence, resulting in overall poorer clinical outcomes in hospitalized COVID-19 patients.
Project description:The lack of available biomarkers for diagnosing and predicting different stages of coronavirus disease 2019 (COVID-19) is currently one of the main challenges that clinicians are facing. Recent evidence indicates that the plasma levels of specific miRNAs may be significantly modified in COVID-19 patients. Large-scale deep sequencing analysis of small RNA expression was performed on plasma samples from 40 patients hospitalized for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (between March and May 2020) (median 13.50 [IQR 9–24] days since symptoms initiation) and 21 healthy noninfected individuals. Patients were categorized as hospitalized not requiring oxygen therapy (n = 6), hospitalized requiring low-flow oxygen (n = 23), and hospitalized requiring high-flow oxygen support (n = 11). A total of 1218 different micro(mi)RNAs were identified. When compared with healthy noninfected donors, SARS-CoV-2 infected patients showed significantly (fold change [FC] >1.2 and adjusted p [padj] <0.05) altered expression of 190 miRNAs. The top 10 differentially expressed (DE) miRNAs were miR-122-5p, let-7b-5p, miR-146a-5p, miR-342-3p, miR-146b-5p, miR-629-5p, miR-24-3p, miR-12136, let-7a-5p, and miR-191-5p, which displayed FC and padj values ranging from 153 to 5 and 2.51 × 10-32 to 2.21 × 10-21, respectively, which unequivocally diagnosed SARS-CoV-2 infection. No differences in blood cell counts and biochemical plasma parameters, including interleukin 6, ferritin and D-dimer, were observed between COVID-19 patients on high-flow oxygen therapy, low-flow oxygen therapy, or not requiring oxygen therapy. Notably, 31 significantly deregulated miRNAs were found when patients on high- and low-flow oxygen therapy were compared. Similarly, 6 DE miRNAs were identified between patients on high flow and those not requiring oxygen therapy. SARS-CoV-2 infection generates a specific miRNA signature in hospitalized patients. Furthermore, specific miRNA profiles are associated with COVID-19 prognosis in severe patients.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.