Unknown

Dataset Information

0

Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening.


ABSTRACT: Functional coupling between the amygdala and the dorsomedial prefrontal cortex (dmPFC) has been implicated in the generation of negative affective states; however, the mechanisms by which stress increases amygdala-dmPFC synaptic strength and generates anxiety-like behaviors are not well understood. Here, we show that the mouse basolateral amygdala (BLA)-prelimbic prefrontal cortex (plPFC) circuit is engaged by stress and activation of this pathway in anxiogenic. Furthermore, we demonstrate that acute stress exposure leads to a lasting increase in synaptic strength within a reciprocal BLA-plPFC-BLA subcircuit. Importantly, we identify 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling as a key mechanism limiting glutamate release at BLA-plPFC synapses and the functional collapse of multimodal 2-AG signaling as a molecular mechanism leading to persistent circuit-specific synaptic strengthening and anxiety-like behaviors after stress exposure. These data suggest that circuit-specific impairment in 2-AG signaling could facilitate functional coupling between the BLA and plPFC and the translation of environmental stress to affective pathology.

SUBMITTER: Marcus DJ 

PROVIDER: S-EPMC7992313 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6955336 | biostudies-literature
| S-EPMC10324352 | biostudies-literature
| S-EPMC6013320 | biostudies-literature
| S-EPMC3055309 | biostudies-literature
| S-EPMC2830732 | biostudies-other
| S-EPMC10450650 | biostudies-literature
| S-EPMC6334222 | biostudies-literature
| S-EPMC3587115 | biostudies-literature
| S-EPMC8722735 | biostudies-literature
| S-EPMC9752096 | biostudies-literature