Project description:ObjectivesTo investigate differences in progression patterns of normal-tension glaucoma (NTG) patients in three clusters classified by hierarchical cluster analysis (HCA).Materials and methodsIn a retrospective study, 200 eyes of NTG patients classified by HCA in 2015 who were followed up to the current date were evaluated. Peripapillary retinal nerve fibre layer (RNFL) thicknesses were measured by Cirrus HD-OCT and progression rate was calculated by trend analysis (Guided Progression Analysis [GPA]). VF progression rate was evaluated by linear regression analysis of mean deviation (MD). Progression patterns of three clusters were compared by histograms.ResultsIn total, 153 eyes of 153 patients were followed up. Mean observation period was 5 years. RNFL reduction rate was -0.83 μm/year in cluster 1, which showed early glaucomatous damage in previous reports; -0.45 μm/year in cluster 2, which showed moderate glaucomatous damage; and -0.36 μm/year in cluster 3, which showed young and myopic glaucomatous damage. The progression pattern of cluster 3 showed a double-peak distribution; RNFL reduction rate was 0.11 μm/year in the non-progressive group and -1.07 μm/year in the progressive group.ConclusionThe progression patterns were different among three NTG groups that were divided by HCA. In particular, the group of young and myopic eyes showed a mixture of two different patterns.
Project description:Glaucoma is a neurodegenerative disease of the eye, which involves degeneration of retinal ganglion cells (RGCs): the output neurons of the retina to the brain, which with their axons comprise the optic nerve. Recent studies have shown the possible involvement of oxidative stress in the pathogenesis of glaucoma, especially in the subtype of normal tension glaucoma. Basic experiments utilizing rodent and primate models of glaucoma revealed that antioxidants protect RGCs under various pathological conditions including glutamate neurotoxicity and optic nerve injury. These results suggested that existing drugs and food factors may be useful for prevention and hence therapy of glaucoma. In this review, we highlight some therapeutic candidates, particularly those with antioxidant properties, and discuss the therapeutic potential of RGC protection by modulating gene expressions that prevent and ameliorate glaucoma.
Project description:PurposeTo identify sectors of the optical coherence tomography (OCT) macular map that could be used to effectively assess structural progression in patients with normal-tension glaucoma (NTG).MethodsThis study examined 117 eyes of 117 NTG patients to establish axonal tract-dependent macular sectors, and also examined a separate group of 122 eyes of 81 NTG patients to evaluate the ability of these sectors to reveal glaucoma progression. Longitudinal data, including macular maps from at least 5 OCT examinations performed over at least 2 years, was available for all patients in this group. Circumpapillary retinal nerve fiber layer thickness (cpRNFLT), temporal clockwise sector scans (from 7 to 11 o'clock), macular retinal nerve fiber layer thickness (mRNFLT), and macular ganglion cell layer plus inner plexiform layer thickness (mGCIPLT) were measured with spectral-domain OCT (3D OCT-2000, TOPCON). The axonal tract-dependent macular sectors were identified by calculating Spearman's rank correlation coefficient for each point on a grid overlaid on the macular map and cpRNFLT in each clockwise scan sector. Trend and event analyses for the slope of progression in each sector and macular map were performed. Visual field progression in the macula was defined by the presence of more than 2 progressive test points in the 16 central test points of the Humphrey field analyzer SITA standard 24-2 program, evaluated with Progressor software.ResultsThe slope of progression in the entire macular area was -0.22 ± 0.58 ?m/year for mRNFLT and -0.35 ± 0.52 ?m/year for mGCIPLT. The fastest-progressing mRNFLT sector (-1.00 ± 0.84 ?m/year, p < 0.001) and mGCIPLT sector (-1.16 ± 0.63 ?m/year, p < 0.001) progressed significantly faster than the overall macula. Classifying patients according to visual field progression showed that baseline mRNFLT in the inferior hemifield, 7 and 8 o'clock sectors, as well as baseline mGCIPLT in the overall macular map, inferior hemifield, and 8 o'clock sector, were significantly lower in progressors (22 eyes) than non-progressors (100 eyes). There were significant differences in mRNFLT slope in 8 o'clock sector and in the fastest progressing sector in progressors and non-progressors, but mGCIPLT did not differ, even in the fastest-progressing sector. Event analysis showed that progression occurred most frequently in inferior mRNFLT and superior mGCIPLT in this study.ConclusionAxonal tract-dependent OCT macular sectors could effectively reveal structural change in patients with NTG. Furthermore, mRNFLT slope was consistent with visual field progression. This method promises to open new avenues for the OCT-based evaluation of glaucoma progression.
Project description:Normal-tension glaucoma (NTG) is a multifactorial optic neuropathy which, similar to open-angle glaucomas, is characterized by progressive retinal ganglion cell death and glaucomatous visual field loss. The major distinction of NTG from open-angle glaucomas is that the intraocular pressure (IOP) does not exceed the normal range. Missing the major risk factor and target of therapy, the elevated IOP, NTG poses a clinical challenge. Several insightful reviews have been published on the pathophysiology of NTG describing the possible underlying mechanisms. The current literature available also suggests that a significant percentage of patients with NTG (as high as 21%) have a family history of glaucoma, indicating a genetic predisposition to the disease. These facts strengthen the indication that NTG remains an enigmatic process. The aim of this review was to summarize the vascular, mechanical and genetic components considered to be responsible for NTG development and to discuss the mechanisms through which they are involved in the pathogenesis of NTG.
Project description:An objective method to predict individual visual field progression will contribute to realise personalised medication. The purpose of this study was to establish a predictive formula for glaucomatous visual field progression in patients with Primary open-angle glaucoma, mainly including normal tension glaucoma. This study was a large-scale, longitudinal and retrospective study including 498 eyes of 312 patients visiting from June 2009 to May 2015. In this analysis, 191 eyes of 191 patients meeting all eligible criteria were used. A predictive formula to calculate the rate of glaucomatous visual field progression (mean deviation slope) was obtained through multivariate linear regression analysis by adopting "Angle of Retinal Nerve Fibre Layer Defect" at the baseline, "Vertical Cup-Disc ratio" at the baseline, "Presence or absence of Disc Haemorrhage" during the follow-up period, and "Mean IOP change (%)" during the follow-up period as predictors. Coefficient of determination of the formula was 0.20. The discriminative ability of the formula was evaluated as moderate performance using receiver operating characteristic analysis, and the area under the curve was approximately 0.75 at all cut-off values. Internal validity was confirmed by bootstrapping. The predictive formula established by this type of approach might be useful for personalised medication.
Project description:Normal-tension glaucoma (NTG) is a common cause of vision loss.To investigate the role of TANK binding kinase 1 (TBK1) gene duplications in NTG to gain insights into the causes of glaucoma that occurs at low intraocular pressure (IOP).In this multicenter case-control study, we investigated patients who met the criteria for NTG, including glaucomatous optic neuropathy, visual field defects, and maximum recorded untreated IOP of 21 mm Hg or less, and matched controls. Participants (N?=?755) were recruited from Southampton, United Kingdom (180 patients and 178 controls), Rochester, Minnesota (65 patients and 12 controls), New York, New York (96 patients and 16 controls), and Iowa City, Iowa (208 controls).Detection of TBK1 gene duplications and comparison of the extent of the identified DNA that is duplicated with prior TBK1 copy number variations associated with NTG.A TBK1 gene duplication was detected in 1 of 96 patients (1.0%) from New York and none of the controls. Analysis of duplication borders with comparative genome hybridization demonstrated that this patient has a novel duplication that has not been previously reported. No gene duplications were detected in any of the other cohorts of patients or controls.Duplication of the TBK1 gene is a rare cause of NTG. The identification of another case of NTG attributed to TBK1 gene duplication strengthens the case that this mutation causes glaucoma.
Project description:Importance:Mutations in the myocilin (MYOC) gene are the most common molecularly defined cause of primary open-angle glaucoma that typically occurs in patients with high intraocular pressures (IOP). One MYOC mutation, p.Gln368Ter, has been associated with as many as 1.6% of primary open-angle glaucoma cases that had a mean maximum recorded IOP of 30 mm Hg. However, to our knowledge, the role of the p.Gln368Ter mutation in patients with normal-tension glaucoma (NTG) with an IOP of 21 mm Hg or lower has not been investigated. Objective:To evaluate the role of the p.Gln368Ter MYOC mutation in patients with NTG. Design, Setting, and Participants:In this case-control study of the prevalence of the p.Gln368Ter mutation in patients with NTG, cohort 1 was composed of 772 patients with NTG and 2152 controls from the United States (Iowa, Minnesota, and New York) and England and cohort 2 was composed of 561 patients with NTG and 2606 controls from the Massachusetts Eye and Ear Infirmary and the NEIGHBORHOOD consortium. Genotyping was conducted using real-time polymerase chain reaction that was confirmed with Sanger sequencing, the imputation of genome-wide association study data, or an analysis of whole-exome sequence data. Data analysis occurred between April 2007 and April 2018. Main Outcomes and Measures:Comparison of the frequency of the p.Gln368Ter MYOC mutation between NTG cases and controls with the Fisher exact test. Results:Of 6091 total participants, 3346 (54.9%) were women and 5799 (95.2%) were white. We detected the p.Gln368Ter mutation in 7 of 772 patients with NTG (0.91%) and 7 of 2152 controls (0.33%) in cohort 1 (P = .03). In cohort 2, we detected the p.Gln368Ter mutation in 4 of 561 patients with NTG (0.71%) and 10 of 2606 controls (0.38%; P = .15). When the cohorts were analyzed as a group, the p.Gln368Ter mutation was associated with NTG (odds ratio, 2.3; 95% CI, 0.98-5.3; P = .04). Conclusions and Relevance:In cohorts 1 and 2, the p.Gln368Ter mutation in MYOC was found in patients with IOPs that were 21 mm Hg or lower (NTG), although at a frequency that is lower than previously detected in patients with higher IOP. These data suggest that the p.Gln368Ter mutation may be associated with glaucoma in patients with normal IOPs as well as in patients with IOPs that are greater than 21 mm Hg.
Project description:Although primary open-angle glaucoma (OAG) generally occurs in older individuals and manifests in eyes with elevated intraocular pressure (IOP), it may also occur in young patients or in eyes with an IOP that always measures within the statistically normal range. Recent advances in optical coherence tomography angiography have enabled noninvasive visualization of the vasculature around the optic disc. In this study, we investigated the clinical features of young Korean patients with OAG and compared the peripapillary vessel density of patients with normal-tension glaucoma (NTG) to those with high-tension glaucoma (HTG). The peripapillary vessel density was reduced in eyes with HTG compared with that in normal subjects (HTG: 23.18?±?2.06% vs. normal subjects: 24.74?±?1.88%, P value?=?0.013). In contrast, the peripapillary vessel density of eyes with NTG was comparable with that of normal eyes (NTG: 23.98?±?2.30% vs. normal subjects: 24.74?±?1.88%, P value?=?0.505). These findings suggest that young patients with HTG show greater peripapillary microvascular attenuation than healthy subjects or young patients with NTG, indicating that different levels of the initial untreated IOP may have different effects on the peripapillary vessel density in young patients with OAG.
Project description:Duplication of the TBK1 gene is associated with 1-2% of normal tension glaucoma, a common cause of vision loss and blindness that occurs without grossly abnormal intraocular pressure. We generated a transgenic mouse that has one copy of the human TBK1 gene (native promoter and gene structure) incorporated into the mouse genome (Tg-TBK1). Expression of the TBK1 transgene in the retinae of these mice was demonstrated by real-time PCR. Using immunohistochemistry TBK1 protein was predominantly localized to the ganglion cell layer of the retina, the cell type most affected by glaucoma. More intense TBK1 labelling was detected in the retinal ganglion cells (RGCs) of Tg-TBK1 mice than in wild-type littermates. Tg-TBK1 mice exhibit the cardinal sign of glaucoma, a progressive loss of RGCs. Hemizygous Tg-TBK1 mice (with one TBK1 transgene per genome) had a 13% loss of RGCs by 18 months of age (P?=?1.5 × 10-8). Homozygous Tg-TBK1 mice had 7.6% fewer RGCs than hemizygous Tg-TBK1 mice and 20% fewer RGCs than wild-type mice (P?=?1.9 × 10-5) at 6 months of age. No difference in intraocular pressures was detected between Tg-TBK1 mice and wild-type littermates as they aged (P?>?0.05). Tg-TBK1 mice with extra doses of the TBK1 gene recapitulate the phenotype of normal tension glaucoma in human patients with a TBK1 gene duplication. Together, these studies confirm the pathogenicity of the TBK1 gene duplication in human glaucoma and suggest that excess production of TBK1 kinase may have a role in the pathology of glaucoma.