Spatiotemporal dynamics of habitat suitability for the Ethiopian staple crop, Eragrostis tef (teff), under changing climate
Ontology highlight
ABSTRACT: Teff (Eragrostis tef (Zucc.) Trotter) is a staple, ancient food crop in Ethiopia. Its growth is affected by climate change, so it is essential to understand climatic effects on its habitat suitability in order to design countermeasures to ensure food security. Based on the four Representative Concentration Pathway emission scenarios (i.e., RCP2.6, RCP4.5, RCP6.0 and RCP8.5) set by the Intergovernmental Panel on Climate Change (IPCC), we predicted the potential distribution of teff under current and future scenarios using a maximum entropy model (Maxent). Eleven variables were selected out of 19, according to correlation analysis combined with their contribution rates to the distribution. Simulated accuracy results validated by the area under the curve (AUC) had strong predictability with values of 0.83–0.85 for current and RCP scenarios. Our results demonstrated that mean temperature in the coldest season, precipitation seasonality, precipitation in the cold season and slope are the dominant factors driving potential teff distribution. Proportions of suitable teff area, relative to the total study area were 58% in current climate condition, 58.8% in RCP2.6, 57.6% in RCP4.5, 59.2% in RCP6.0, and 57.4% in RCP8.5, respectively. We found that warmer conditions are correlated with decreased land suitability. As expected, bioclimatic variables related to temperature and precipitation were the best predictors for teff suitability. Additionally, there were geographic shifts in land suitability, which need to be accounted for when assessing overall susceptibility to climate change. The ability to adapt to climate change will be critical for Ethiopia’s agricultural strategy and food security. A robust climate model is necessary for developing primary adaptive strategies and policy to minimize the harmful impact of climate change on teff.
Project description:Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource.The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten.It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.
Project description:Main conclusionSeed priming with gas plasma-activated water results in an increased ageing resilience in Eragrostis tef grains compared to a conventional hydropriming protocol. Tef (Eragrostis tef) is a cereal grass and a major staple crop of Ethiopia and Eritrea. Despite its significant importance in terms of production, consumption, and cash crop value, tef has been understudied and its productivity is low. In this study, tef grains have undergone different priming treatments to enhance seed vigour and seedling performance. A conventional hydropriming and a novel additive priming technology with gas plasma-activated water (GPAW) have been used and tef grains were then subjected to germination performance assays and accelerated ageing. Tef priming increases the germination speed and vigour of the grains. Priming with GPAW retained the seed storage potential after ageing, therefore, presenting an innovative environmental-friendly seed technology with the prospect to address variable weather conditions and ultimately food insecurity. Seed technology opens new possibilities to increase productivity of tef crop farming to achieve a secure and resilient tef food system and economic growth in Ethiopia by sustainable intensification of agriculture beyond breeding.
Project description:Teff [Eragrostis tef (Zuccagni) Trotter] is a small-sized cereal grain and an indigenous crop in Ethiopia. The Amhara region is one of the major teff producers regions in the country. However, information on the phenolic content of the region's teff varieties is limited. Seventy-two teff samples were collected from three administrative zones (West Gojjam zone, Awi zone, and East Gojjam zone) of the Amhara region of Ethiopia. The samples' total polyphenol and flavonoid contents were determined using colorimetric methods. The total flavonoid contents expressed as catechin equivalent, CE (i.e., under alkaline conditions) and quercetin equivalent, Q.E (i.e., under the methanolic solution of AlCl3) were found to be in the range of 7.66 ± 0.60-57.36 ± 3.87 mg C.E and 15.45 ± 0.15-113.12 ± 3.09 mg Q.E per 100 g of teff samples, respectively. The corresponding total polyphenol content (TPC), described as gallic acid equivalent (G.A.E.), was in the range of 46.21 ± 1.20-133.32 ± 5.44 mg G.A.E. The results showed that the mean TPC value of the teff samples from the West Gojjam zone was enriched with polyphenol than samples from the Awi zone and East Gojjam. Furthermore, it was noted that the mean TPC and TFC values did not vary significantly between samples of the East Gojjam and Awi zone (p > 0.05). In contrast, a significant difference in mean TPC and TFC-Q.E were noted between the sampling zone of East Gojjam and West Gojjam and between West Gojjam and Awi zones (p < 0.05). These significant variations in TPC and TFC might be due to observable variations in the agroecological zones and the genetic-make-up of the samples. Person correlation indicated a significant positive correlation matrix between the three variables (p = 0.01). The teff samples were trying to be classified based on their geographical origin using hierarchical cluster analysis (HCA) and biplots. Accordingly, the variance explained by component 1 (PC1) is 67.2%, and the variance explained by component 2 (PC2) is 20.0%.
Project description:Silicon (Si) is one of the beneficial plant mineral nutrients which is known to improve biotic and abiotic stress resilience and productivity in several crops. However, its beneficial role in underutilized or "orphan" crop such as tef [Eragrostis tef (Zucc.) Trotter] has never been studied before. In this study, we investigated the effect of Si application on tef plant performance. Plants were grown in soil with or without exogenous application of Na2SiO3 (0, 1.0, 2.0, 3.0, 4.0, and 5.0 mM), and biomass and grain yield, mineral content, chlorophyll content, plant height, and expression patterns of putative Si transporter genes were studied. Silicon application significantly increased grain yield (100%) at 3.0 mM Si, and aboveground biomass yield by 45% at 5.0 mM Si, while it had no effect on plant height. The observed increase in grain yield appears to be due to enhanced stress resilience and increased total chlorophyll content. Increasing the level of Si increased shoot Si and Na content while it significantly decreased the content of other minerals including K, Ca, Mg, P, S, Fe, and Mn in the shoot, which is likely due to the use of Na containing Si amendment. A slight decrease in grain Ca, P, S, and Mn was also observed with increasing Si treatment. The increase in Si content with increasing Si levels prompted us to analyze the expression of Si transporter genes. The tef genome contains seven putative Si transporters which showed high homology with influx and efflux Lsi transporters reported in various plant species including rice. The tef Lsi homologs were deferentially expressed between tissues (roots, leaves, nodes, and inflorescences) and in response to Si, suggesting that they may play a role in Si uptake and/or translocation. Taken together, these results show that Si application improves stress resilience and yield and regulates the expression of putative Si transporter genes. However, further study is needed to determine the physiological function of the putative Si transporters, and to study the effect of field application of Si on tef productivity.
Project description:Tef (Eragrostis tef) is an orphan crop that is widely grown in East Africa, primarily in Ethiopia as a staple crop. It is becoming popular in the Western world owing to its nutritious and gluten-free grains and the forage quality of its biomass. Tef is also considered to have a high antioxidant capacity based on cell-free studies. However, the antioxidant activity of tef has never been validated using a physiologically relevant cell model. The purpose of this study was to investigate the antioxidant capacity of tef grain extracts using a mammalian cell model. We hypothesized that the tef grain extracts are capable of modulating the cellular antioxidant response via the modulation of glutathione (GSH) biosynthetic pathways. Therefore, we evaluated the antioxidant activity of purified tef grain extracts in the human acute monocytic leukemia (THP-1) cell line. Our findings revealed that the organic fraction of grain extracts increased the cellular GSH level, which was more evident for brown-colored tef than the ivory variety. Moreover, a brown-tef fraction increased the expressions of GSH-pathway genes, including γ-glutamate cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits and glutathione reductase (GR), an enzyme that plays a key role in GSH biosynthesis, suggesting that tef extracts may modulate GSH metabolism. Several compounds were uniquely identified via mass spectrometry (MS) in GSH-modulating brown-tef samples, including 4-oxo-β-apo-13-carotenone, γ-linolenic acid (methyl ester), 4,4′-(2,3-dimethyl-1,4-butanediyl)bis-phenol (also referred to as 8,8′-lignan-4,4′-diol), and (3β)-3-[[2-[4-(Acetylamino)phenoxy]acetyl]oxy]olean-12-en-28-oic acid. Tef possesses antioxidant activity due to the presence of phytochemicals that can act as direct antioxidants, as well as modulators of antioxidant-response genes, indicating its potential role in alleviating diseases triggered by oxidative stresses. To the best of our knowledge, this is the first report revealing the antioxidant ability of tef extracts in a physiologically relevant human cell model.
Project description:Injera is soft fermented baked product, which is commonly prepared from teff (Eragrostis tef (Zucc.)) flour and believed to be consumed on daily basis by two-thirds of Ethiopians. As it is a product of naturally fermented dough, the course of fermentation is done by consortia of microorganisms. The study was aimed at isolating and identifying some dominant bacteria from fermenting teff (Eragrostis tef) dough. A total of 97 dough samples were collected from households, microenterprises, and hotels with different fermentation stage from Addis Ababa. The bacterial isolates obtained from the fermenting teff dough samples were selected on the basis of their acid production potentials. A total of 24 purified bacterial isolates were found to be Gram-positive (they are coccus and rod under microscope) and were good acid producers. Genomic DNA of bacterial isolates were extracted using Invisorb® Spin DNA Extraction kit. 16S rRNA of bacterial isolates were amplified using the bacteria universal primers (rD1 and fD1). The amplified product was sequenced at Genewiz, USA. Sequence analysis and comparison with the resources at the database were conducted to identify the isolated microbes into species and strain levels. The bacterial isolates were identified as Lactobacillus paracasei, Lactobacillus brevis, Enterococcus durans, Enterococcus hirae, Enterococcus avium, and Enterococcus faecium. All identified lactic acid bacteria were able to produce acid at 12 h time of incubation. This study has confirmed the presence of different bacterial species in the fermenting teff dough and also supports the involvement of various groups of bacterial species in the course of the fermentation.
Project description:The orphan crop, Eragrostis tef, was subjected to controlled drought conditions to observe the physiological parameters and proteins changing in response to dehydration stress. Physiological measurements involving electrolyte leakage, chlorophyll fluorescence and ultra-structural analysis showed tef plants tolerated water loss to 50% relative water content (RWC) before adverse effects in leaf tissues were observed. Proteomic analysis using isobaric tag for relative and absolute quantification (iTRAQ) mass spectrometry and appropriate database searching enabled the detection of 5727 proteins, of which 211 proteins, including a number of spliced variants, were found to be differentially regulated with the imposed stress conditions. Validation of the iTRAQ dataset was done with selected stress-related proteins, fructose-bisphosphate aldolase (FBA) and the protective antioxidant proteins, monodehydroascorbate reductase (MDHAR) and peroxidase (POX). Western blot analyses confirmed protein presence and showed increased protein abundance levels during water deficit while enzymatic activity for FBA, MDHAR and POX increased at selected RWC points. Gene ontology (GO)-term enrichment and analysis revealed terms involved in biotic and abiotic stress response, signaling, transport, cellular homeostasis and pentose metabolic processes, to be enriched in tef upregulated proteins, while terms linked to reactive oxygen species (ROS)-producing processes under water-deficit, such as photosynthesis and associated light harvesting reactions, manganese transport and homeostasis, the synthesis of sugars and cell wall catabolism and modification, to be enriched in tef downregulated proteins.
Project description:Teff (Eragrostis tef) is an ancient cereal that is indigenous from Ethiopia. Nowadays, teff grain is becoming popular to many parts of the world. Teff is gluten-free in nature, has high iron and fiber content, and many other health benefits make this crop interesting to many consumers. Since no insect pests are attacking the teff grains, farmers do not apply pesticides on it, unlike maize and other grains. Nevertheless, residues of organochlorine pesticides have been detected at an alarming level that could pose a consumer risk. Teff is often consumed as injera which is a fermented flat pancake. The main aim of the present study is, therefore, to investigate the effect of household food processing (doughing and baking) on the reduction of pesticide residues from teff. Pesticide residues previously detected in teff grain such as permethrin, cypermethrin, deltamethrin, chlorpyrifos ethyl, p,p'-DDE, p,p'-DDD, o,p'-DDT, and p,p'-DDT were spiked and extracted followed by the subsequent household processing which are generally doughing (dough making followed by fermentation) and baking. From the findings of this study, doughing decrease the pesticide residues in the range of 59.9-86.4% and baking in the range of 63.2-90.2%. Kruskal-Wallis analysis indicates that the reduction of pesticide residues by baking is significantly different from doughing (p-value < 0.0001). There is also a significant difference between non-fermented and fermented dough (p-value = 0.012). The processing factor for doughing and baking was less than one (PF < 1 = reduction factor) which indicates the reduction of pesticides due to teff processing. The cumulative effect of these processing methods is important to evaluate the risks associated with the ingestion of pesticides, particularly in teff grain.
Project description:The dynamic nature of soil fertility status across different landscapes attracted research attention in Ethiopia and the globe. Teff [Eragrotis tef] is a major staple cereal crop in Ethiopia but yields are low due to inadequate nutrient supply and other constraints. A field study was conducted in 2020 and 2021 in the Habru district of Amhara Region to determine teff yield response to fertilizer-N and -P at hillslope, midslope, and footslope positions with slopes of >15%, 5-15%, and 0-5%, respectively. N and P fertilizer rates were factorially combined in randomized complete block design with three replications in each farmer's field. A linear mixed modeling framework was used to determine effects on grain yield due to N rate, P rate, slope, study sites, and years. Model fit was examined using Akaike's Information Criterion and Bayesian Information Criterion. Economic analysis was done with a quadratic response function to determine the economics of fertilizer. Yield response to fertilizer-P was affected by slope but the response to fertilizer-N was not affected. Teff yield increase with fertilizer-N application up to 92 kg ha-1 the economic optimum rate based on the yield response function for nitrogen fertilizer was 85.4 kg ha-1 to obtain maximum profit (86878.8 birr ha-1). Similarly, the optimum phosphorus fertilizer rate at the hill slope was 39.7 kg ha-1 to obtain a maximum profit of (96847.8 birr ha-1). But there was not a profitable response at the midslope and foot slope positions. Therefore, for Habru district and similar agroecologies85.4 kg ha-1 N and 39.7 kg ha-1 P in hillslopes and only 85.4 N kg ha-1 for midslopes and foot slopes are expected to give the most profitable returns to fertilizer applied for tef production.