Unknown

Dataset Information

0

New Mechanistic Insights on Carbon Nanotubes' Nanotoxicity Using Isolated Submitochondrial Particles, Molecular Docking, and Nano-QSTR Approaches.


ABSTRACT: Single-walled carbon nanotubes can induce mitochondrial F0F1-ATPase nanotoxicity through inhibition. To completely characterize the mechanistic effect triggering the toxicity, we have developed a new approach based on the combination of experimental and computational study, since the use of only one or few techniques may not fully describe the phenomena. To this end, the in vitro inhibition responses in submitochondrial particles (SMP) was combined with docking, elastic network models, fractal surface analysis, and Nano-QSTR models. In vitro studies suggest that inhibition responses in SMP of F0F1-ATPase enzyme were strongly dependent on the concentration assay (from 3 to 5 µg/mL) for both pristine and COOH single-walled carbon nanotubes types (SWCNT). Besides, both SWCNTs show an interaction inhibition pattern mimicking the oligomycin A (the specific mitochondria F0F1-ATPase inhibitor blocking the c-ring F0 subunit). Performed docking studies denote the best crystallography binding pose obtained for the docking complexes based on the free energy of binding (FEB) fit well with the in vitro evidence from the thermodynamics point of view, following an affinity order such as: FEB (oligomycin A/F0-ATPase complex) = -9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = -6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = -5.9 kcal/mol, with predominance of van der Waals hydrophobic nano-interactions with key F0-ATPase binding site residues (Phe 55 and Phe 64). Elastic network models and fractal surface analysis were performed to study conformational perturbations induced by SWCNT. Our results suggest that interaction may be triggering abnormal allosteric responses and signals propagation in the inter-residue network, which could affect the substrate recognition ligand geometrical specificity of the F0F1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH). In addition, Nano-QSTR models have been developed to predict toxicity induced by both SWCNTs, using results of in vitro and docking studies. Results show that this method may be used for the fast prediction of the nanotoxicity induced by SWCNT, avoiding time- and money-consuming techniques. Overall, the obtained results may open new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms, rational drug design-based nanotechnology, and potential biomedical application in precision nanomedicine.

SUBMITTER: Gonzalez-Durruthy M 

PROVIDER: S-EPMC7996163 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6398333 | biostudies-literature
| S-EPMC4114241 | biostudies-literature
| S-EPMC5859298 | biostudies-literature
| S-EPMC4872148 | biostudies-literature
| S-EPMC6044846 | biostudies-literature
| S-EPMC5587187 | biostudies-literature
| S-EPMC6709384 | biostudies-literature
| S-EPMC8709863 | biostudies-literature
2022-07-05 | GSE206630 | GEO
| S-EPMC9505250 | biostudies-literature