Unknown

Dataset Information

0

Hydrothermal Cobalt Doping of Titanium Dioxide Nanotubes towards Photoanode Activity Enhancement


ABSTRACT: Doping and modification of TiO2 nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent. The material was characterized by the SEM, EDX, and XRD methods, Raman spectroscopy, XPS, and UV-Vis reflectance measurements. Electrochemical measurement was used along with a number of electrochemical methods: chronoamperometry, electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry in dark conditions and under solar light illumination. Improved photoelectrocatalytic activity of cobalt-doped TiO2 nanotubes is achieved mainly due to its regular nanostructure and real surface area increase, as well as improved visible light absorption for an appropriate dopant concentration.

SUBMITTER: Wtulich M 

PROVIDER: S-EPMC8003354 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4813156 | biostudies-literature
| S-EPMC6748954 | biostudies-literature
| S-EPMC4745049 | biostudies-literature
| S-EPMC7893638 | biostudies-literature
| S-EPMC7439370 | biostudies-literature
| S-EPMC4340467 | biostudies-literature
| S-EPMC4266858 | biostudies-other
| S-EPMC7060458 | biostudies-literature
2010-12-22 | GSE17902 | GEO
| S-EPMC5947148 | biostudies-literature