Unknown

Dataset Information

0

Development of highly efficient platinum catalysts for hydroalkoxylation and hydroamination of unactivated alkenes.


ABSTRACT: Hydrofunctionalization, the direct addition of an X-H (e.g., X=O, N) bond across an alkene, is a desirable strategy to make heterocycles that are important structural components of naturally occurring molecules. Described here is the design and discovery of "donor-acceptor"-type platinum catalysts that are highly effective in both hydroalkoxylation and hydroamination of unactivated alkenes over a broad range of substrates under mild conditions. A number of alkene substitution patterns are accommodated, including tri-substituted, 1,1-disubstituted, (E)-disubstituted, (Z)-disubstituted and even mono-substituted double bonds. Detailed mechanistic investigations suggest a plausible pathway that includes an unexpected dissociation/re-association of the electron-deficient ligand to form an alkene-bound "donor-acceptor"-type intermediate. These mechanistic studies help understand the origins of the high reactivity exhibited by the catalytic system, and provide a foundation for the rational design of chiral catalysts towards asymmetric hydrofunctionalization reactions.

SUBMITTER: Zhou Y 

PROVIDER: S-EPMC8007598 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3394429 | biostudies-literature
| S-EPMC6583794 | biostudies-literature
| S-EPMC7202396 | biostudies-literature
| S-EPMC5288498 | biostudies-literature
| S-EPMC3800136 | biostudies-literature
| S-EPMC8159283 | biostudies-literature
| S-EPMC6247111 | biostudies-literature
| S-EPMC8179506 | biostudies-literature
| S-EPMC8594411 | biostudies-literature
| S-EPMC3419474 | biostudies-literature