Project description:Chiari I malformation (CM1), the displacement of the cerebellum through the foramen magnum into the spinal canal, is one of the most common pediatric neurological conditions. Individuals with CM1 can present with neurological symptoms, including severe headaches and sensory or motor deficits, often as a consequence of brainstem compression or syringomyelia (SM). We conducted whole-exome sequencing (WES) on 668 CM1 probands and 232 family members and performed gene-burden and de novo enrichment analyses. A significant enrichment of rare and de novo non-synonymous variants in chromodomain (CHD) genes was observed among individuals with CM1 (combined p = 2.4 × 10-10), including 3 de novo loss-of-function variants in CHD8 (LOF enrichment p = 1.9 × 10-10) and a significant burden of rare transmitted variants in CHD3 (p = 1.8 × 10-6). Overall, individuals with CM1 were found to have significantly increased head circumference (p = 2.6 × 10-9), with many harboring CHD rare variants having macrocephaly. Finally, haploinsufficiency for chd8 in zebrafish led to macrocephaly and posterior hindbrain displacement reminiscent of CM1. These results implicate chromodomain genes and excessive brain growth in CM1 pathogenesis.
Project description:Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3-5 mm or more, the frequency of which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.
Project description:BackgroundGenetic factors contribute to the development of anxiety disorders, yet few risk genes have been previously identified. One genomic approach that has achieved success in identifying risk genes in related childhood neuropsychiatric conditions is investigations of de novo variants, which has yet to be leveraged in childhood anxiety disorders.MethodsWe performed whole-exome DNA sequencing in 76 parent-child trios (68 trios after quality control) recruited from a childhood anxiety disorder clinic and compared rates of rare and ultra-rare de novo variants with 790 previously sequenced control trios (783 trios after quality control). We then explored overlap with risk genes for other neuropsychiatric conditions and enrichment in biologic pathways.ResultsRare and ultra-rare de novo likely gene disrupting and predicted damaging missense genetic variants are enriched in anxiety disorder probands compared with controls (rare variant rate ratio 1.97, 95% confidence interval [CI]: 1.11-3.34, p = .03; ultra-rare variant rate ratio 2.59, 95% CI: 1.35-4.70, p = .008). These de novo damaging variants occur in individuals with a variety of childhood anxiety disorders and impact genes that have been associated with other neuropsychiatric conditions. Exploratory network analyses reveal enrichment of deleterious variants in canonical biological pathways.ConclusionsThese findings provide a path for identifying risk genes and promising biologic pathways in childhood anxiety disorders by de novo genetic variant detection. Our results suggest the discovery potential of applying this approach in larger anxiety disorder cohorts to advance our understanding of the underlying biology of these common and debilitating conditions.
Project description:The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA-seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.
Project description:Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features. high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. Only 21 samples with potentially pathogenic CNVs are included in this records
Project description:We report a 73-year-old woman with de novo arteriovenous malformations (AVMs) that developed in the ipsilateral parietal lobe after craniotomy and aneurysm clipping. While intracerebral AVMs are considered to be congenital lesions, there have been several reported cases of acquired AVM arising after ischemic or traumatic episodes. We summarize previously reported cases of such acquired 'de novo' AVMs with a discussion of some pathophysiological responses or factors suggested to promote their development.
Project description:A significant number of variants/mutations in the N-methyl-D-aspartate glutamatergic receptor (NMDAR) gene family (GRIN) have been identified along with stunning advances in the technologies of next generation of whole-exome sequencing. Mutations in human GRIN genes are distributed throughout the entire gene, from amino terminal domain to C-terminal domain, in patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, intellectual disability, attention deficit hyperactivity disorder, and schizophrenia. Analyzing the currently available human genetic variations illustrates the genetic variation intolerance to missense mutations differs significantly among domains within the GRIN genes. Functional analyses of these mutations and their pharmacological profiles provide the first opportunity to understand the molecular mechanism and targeted therapeutic strategies for these neurological and psychiatric disorders, as well as unfold novel clues to channel function.
Project description:Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. VIDEO ABSTRACT.
Project description:The origin of new genes is extremely important to evolutionary innovation. Most new genes arise from existing genes through duplication or recombination. The origin of new genes from noncoding DNA is extremely rare, and very few eukaryotic examples are known. We present evidence for the de novo origin of at least three human protein-coding genes since the divergence with chimp. Each of these genes has no protein-coding homologs in any other genome, but is supported by evidence from expression and, importantly, proteomics data. The absence of these genes in chimp and macaque cannot be explained by sequencing gaps or annotation error. High-quality sequence data indicate that these loci are noncoding DNA in other primates. Furthermore, chimp, gorilla, gibbon, and macaque share the same disabling sequence difference, supporting the inference that the ancestral sequence was noncoding over the alternative possibility of parallel gene inactivation in multiple primate lineages. The genes are not well characterized, but interestingly, one of them was first identified as an up-regulated gene in chronic lymphocytic leukemia. This is the first evidence for entirely novel human-specific protein-coding genes originating from ancestrally noncoding sequences. We estimate that 0.075% of human genes may have originated through this mechanism leading to a total expectation of 18 such cases in a genome of 24,000 protein-coding genes.
Project description:Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features.