Project description:In the absence of an effective vaccine or monoclonal therapeutic, transfer of convalescent plasma (CCP) was proposed early in the SARS-CoV-2 pandemic as an easily accessible therapy. However, despite the global excitement around this historically valuable therapeutic approach, results from CCP trials have been mixed and highly debated. Unlike other therapeutic interventions, CCP represents a heterogeneous drug. Each CCP unit is unique and collected from an individual recovered COVID-19 patient, making the interpretation of therapeutic benefit more complicated. While the prevailing view in the field would suggest that it is administration of neutralizing antibodies via CCP that centrally provides therapeutic benefit to newly infected COVID-19 patients, many hospitalized COVID-19 patients already possess neutralizing antibodies. Importantly, the therapeutic benefit of antibodies can extend far beyond their simple ability to bind and block infection, especially related to their ability to interact with the innate immune system. In our work we deeply profiled the SARS-CoV-2-specific Fc-response in CCP donors, along with the recipients prior to and after CCP transfer, revealing striking SARS-CoV-2 specific Fc-heterogeneity across CCP units and their recipients. However, CCP units possessed more functional antibodies than acute COVID-19 patients, that shaped the evolution of COVID-19 patient humoral profiles via distinct immunomodulatory effects that varied by pre-existing SARS-CoV-2 Spike (S)-specific IgG titers in the patients. Our analysis identified surprising influence of both S and Nucleocapsid (N) specific antibody functions not only in direct antiviral activity but also in anti-inflammatory effects. These findings offer insights for more comprehensive interpretation of correlates of immunity in ongoing large scale CCP trials and for the design of next generation therapeutic design.
Project description:BackgroundThe long-term effect of coronavirus disease 2019 (COVID-19) acute treatments on postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) is unknown. The CONTAIN-Extend study explores the long-term impact of COVID-19 convalescent plasma (CCP) therapy on postacute sequelae of SARS-CoV-2 infection (PASC) symptoms and general health 18 months following hospitalization.MethodsThe CONTAIN-Extend study examined 281 participants from the original CONTAIN COVID-19 trial (CONTAIN-RCT, NCT04364737) at 18 months post-hospitalization for acute COVID-19. Symptom surveys, global health assessments, and biospecimen collection were performed from November 2021 to October 2022. Multivariable logistic and linear regression estimated associations between the randomization arms and self-reported symptoms and Patient-Reported Outcomes Measurement Information System (PROMIS) scores and adjusted for covariables, including age, sex, race/ethnicity, disease severity, and CONTAIN enrollment quarter and sites.ResultsThere were no differences in symptoms or PROMIS scores between CCP and placebo (adjusted odds ratio [aOR] of general symptoms, 0.95; 95% CI, 0.54-1.67). However, females (aOR, 3.01; 95% CI, 1.73-5.34), those 45-64 years (aOR, 2.55; 95% CI, 1.14-6.23), and April-June 2020 enrollees (aOR, 2.39; 95% CI, 1.10-5.19) were more likely to report general symptoms and have poorer PROMIS physical health scores than their respective reference groups. Hispanic participants (difference, -3.05; 95% CI, -5.82 to -0.27) and Black participants (-4.48; 95% CI, -7.94 to -1.02) had poorer PROMIS physical health than White participants.ConclusionsCCP demonstrated no lasting effect on PASC symptoms or overall health in comparison to the placebo. This study underscores the significance of demographic factors, including sex, age, and timing of acute infection, in influencing symptom reporting 18 months after acute hypoxic COVID-19 hospitalization.
Project description:ObjectiveTo present the interim findings from a national study investigating the safety and efficacy of convalescent plasma (CP) containing detectable IgG antibodies as a treatment strategy for severe coronavirus disease 2019 (COVID-19).Trial design and participantsAn open label, two-arm, phase-II clinical trial conducted across 22 hospitals from Saudi Arabia. The intervention group included 40 adults (aged ≥18 years) with confirmed severe COVID-19 and the control group included 124 patients matched using propensity score for age, gender, intubation status, and history of diabetes and/or hypertension. Intervention group included those (a) with severe symptoms (dyspnea; respiratory rate, ≥30/min; SpO2, ≤93%, PaO2/FiO2 ratio, <300; and/or lung infiltrates >50% within 24-48 h), (b) requiring intensive care unit (ICU) care or (c) experiencing life-threatening conditions. The control group included confirmed severe COVID-19 patients of similar characteristics who did not consent for CP infusion or were not able to receive CP due to its nonavailability.InterventionsThe intervention group participants were infused 300 ml (200-400 ml/treatment dose) CP at least once, and if required, daily for up to 5 sessions, along with receiving the best standard of care. The control group only received the best standard of care.OutcomesThe primary endpoints were safety and ICU length of stay (LOS). The secondary endpoints included 30-day mortality, days on mechanical ventilation and days to clinical recovery.ResultsCP transfusion did not result in any adverse effects. There was no difference in the ICU LOS (median 8 days in both groups). The mortality risk was lower in the CP group: 13% absolute risk reduction (P = 0.147), hazard ratio (95% confidence interval): 0.554 (0.299-1.027; P = 0.061) by log-rank test. There was no significant difference in the days on mechanical ventilation and days to clinical recovery.ConclusionCP containing detectable antibodies is a safe strategy and may result in a decrease in mortality in patients with severe COVID-19. The results of the completed trial with a larger study sample would provide more clarity if this difference in mortality is significant.Trial registrationClinicalTrials.gov Identifier: NCT04347681; Saudi Clinical Trials Registry No.: 20041102.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible of the coronavirus disease 2019 (COVID-19) pandemic. Therapeutic options including antimalarials, antivirals, and vaccines are under study. Meanwhile the current pandemic has called attention over old therapeutic tools to treat infectious diseases. Convalescent plasma (CP) constitutes the first option in the current situation, since it has been successfully used in other coronaviruses outbreaks. Herein, we discuss the possible mechanisms of action of CP and their repercussion in COVID-19 pathogenesis, including direct neutralization of the virus, control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation) and immunomodulation of a hypercoagulable state. All these benefits of CP are expected to be better achieved if used in non-critically hospitalized patients, in the hope of reducing morbidity and mortality.
Project description:This study compared the performance of four serology assays for Coronavirus Disease 2019 (COVID-19) and investigated whether COVID-19 disease history correlates with assay performance. Samples were tested at Northshore using the Elecsys Anti-SARS-CoV-2 (Roche Diagnostics), Access SARS-CoV-2 IgG anti-RBD (Beckman Coulter), and LIAISON SARS-CoV-2 S1/S2 IgG (DiaSorin) as well as at Genalyte using Maverick Multi-Antigen Serology Panel. The study included one hundred clinical samples collected before December 2019 and ninety-seven samples collected from convalescent plasma donors originally diagnosed with COVID-19 by PCR. COVID-19 disease history was self-reported by the plasma donors. There was no difference in specificity between the assays tested. Clinical sensitivity of these four tests was 98% (Genalyte), 96% (Roche), 92% (DiaSorin), and 87% (Beckman). The only statistically significant differences in clinical sensitivity was between the Beckman assay and both Genalyte and Roche assays. Convalescent plasma donor characteristics and disease symptoms did not correlate with false negative results from the Beckman and DiaSorin assays. All four tests showed high specificity (100%) and varying sensitivities (89-98%). No correlations between disease history and serology results were observed. The Genalyte Multiplex assay showed as good or better sensitivity to three other previously validated assays with FDA Emergency Use Authorizations.
Project description:The outbreak of the coronavirus disease 2019 (COVID-19) has posed an unprecedented challenge to the health care communities across the globe. As of June 2, 2020, a total of 6,418,968 confirmed COVID-19 cases with 378,954 deaths have been reported. Different regions of the world have reported varying intensity of COVID-19 severity. The disease burden for COVID-19 depends on multiple factors like the local infection rate, susceptible population, mortality rate, and so on. The COVID-19 pandemic is a rapidly evolving emergency and is a subject of regular debate and advanced research. As of today, there is a lack of definitive treatment options for COVID-19 pneumonia. In search of alternative options, few drugs are being tested for their efficacy and repurposing. Preliminary reports have shown positive outcomes with Remdesivir and tocilizumab, but this needs further confirmation. Recently, the therapeutic application of Convalescent Plasma therapy in critically ill patients suffering from COVID-19 has gained momentum. We hereby discuss the convalescent plasma as a potential therapeutic option, its challenges of finding the ideal donors, transfusion medicine responsibilities, and the current global experience with its use.