Project description:Sensitization to fungi often leads to a severe form of asthma that is particularly difficult to manage clinically, resulting in increased morbidity and hospitalizations in these patients. Although B lymphocytes might exacerbate asthma symptoms through the production of IgE, these cells might also be important in the protective response against inhaled fungi. Through cytokine release and T-cell interactions, these lymphocytes might also influence the development and maintenance of airway wall fibrosis. J(H)(-/-) mice lack the JH gene for the heavy chain component of antibodies, which is critical for B-cell function and survival. These animals have facilitated the elucidation of the role of B lymphocytes in a number of immune responses; however, J(H)(-/-) mice have not been used to study fungal allergy. In this study, we examined the role of B lymphocytes using an Aspergillus fumigatus murine fungal aeroallergen model that mimics human airway disease that is triggered by environmental fungal exposure. We compared disease progression in sensitized wild-type BALB/c and J(H)(-/-) mice that were exposed to repeated fungal exposure and found no differences in airway hyperresponsiveness, overall pulmonary inflammation or collagen deposition around the large airways. However, the levels of the Th2-type cytokines IL-4 and IL-13 were significantly attenuated in the airways of J(H)(-/-) mice relative to the BALB/c controls. By contrast, levels of the inflammatory cytokines IL-17A and IL-6 were significantly elevated in the J(H)(-/-) animals, and there was significantly more robust airway eosinophilia and neutrophilia than in control animals. Taken together, these findings demonstrate that B lymphocytes help to regulate granulocytic responses to fungal exposure in the pulmonary compartment.
Project description:Airway hyperresponsiveness (AHR) is a clinical feature of asthma and is often in proportion to the underlying severity of the disease. To understand AHR and the mechanisms that contribute to these processes, it is helpful to divide the airway components that affect this feature of asthma into "persistent" and "variable" categories. The persistent component of AHR represents structural changes in the airway, whereas the variable feature relates to inflammatory events. Insight into how these interrelated components of AHR can contribute to asthma is gained by studying treatment effects and models of asthma provocation.
Project description:AimsTo examine whether asthma induced by exposure to aluminium potroom emissions (potroom asthma) is associated with inflammatory changes in the airways.MethodsBronchial biopsy specimens from 20 asthmatic workers (8 non-smokers and 12 smokers), 15 healthy workers (8 non-smokers and 7 smokers), and 10 non-exposed controls (all non-smokers) were analysed. Immunohistofluorescent staining was performed to identify mucosal total leucocytes (CD45+ leucocytes), neutrophils, and mast cells.ResultsMedian RBM thickness was significantly increased in both asthmatic workers (8.2 microm) and healthy workers (7.4 microm) compared to non-exposed controls (6.7 microm). Non-smoking asthmatic workers had significantly increased median density of lamina propria CD45+ leucocytes (1519 cells/mm2 v 660 and 887 cells/mm2) and eosinophils (27 cells/mm2 v 10 and 3 cells/mm2) and significantly increased concentrations of exhaled NO (18.1 ppb v 6.5 and 5.1 ppb) compared to non-smoking healthy workers and non-exposed controls. Leucocyte counts and exhaled NO concentrations varied with smoking habits and fewer leucocytes were observed in asthmatic smokers than in non-smokers Asthmatic smokers had significantly increased numbers of eosinophils in lamina propria compared to non-exposed controls (10 v 3 cells/mm2). Both eosinophilic and non-eosinophilic phenotypes of asthma were recognised in the potroom workers and signs of airway inflammation were also observed in healthy workers.ConclusionsAirway inflammation is a central feature of potroom asthma and exposure to potroom emissions induces pathological alterations similar to those described in other types of asthma. Cigarette smoking seems to affect the underlying mechanisms involved in asthma, as the cellular composition of airway mucosa appears different in asthmatic smokers and non-smokers.
Project description:IntroductionInnate immune activation through exposure to indoor and outdoor pollutants is emerging as an important determinant of asthma severity. For example, household levels of the bacterial product lipopolysaccharide (LPS) are associated with increased asthma severity. We hypothesized that activation of the innate immune receptor TLR5 by its bacterial ligand flagellin will exacerbate airway inflammation and asthma symptoms.MethodsWe determined the effect of flagellin co-exposure with ovalbumin in a murine model of allergic asthma. We evaluated the presence of flagellin activity in house dust of asthma patients. Finally, we analyzed the association of a dominant-negative polymorphism in TLR5 (rs5744168) with asthma symptoms in patients with asthma.ResultsWe showed that bacterial flagellin can be found in the house dust of patients with asthma and that this bacterial product exacerbates allergic airway inflammation in an allergen-specific mouse model of asthma. Furthermore, a dominant-negative genetic polymorphism in TLR5, the receptor for flagellin, is associated with decreased symptoms in patients with asthma.ConclusionTogether, our results reveal a novel genetic protective factor (TLR5 deficiency) and a novel environmental pollutant (microbial flagellin) that influence asthma severity. (Clinical trials NCT01688986 and NCT01087307).
Project description:BACKGROUND:Pentraxin 3 (PTX3) regulates multiple aspects of innate immunity and tissue inflammation. Recently, it has been reported that PTX3 deficiency enhances interleukin (IL)-17A-dominant pulmonary inflammation in an ovalbumin (OVA)-induced mouse asthma model. However, whether PTX3 treatment would provide protection against allergic airway inflammation has not been clearly elucidated. The goal of this study was to further investigate the effect of recombinant PTX3 administration on the phenotype of asthma. METHODS:C57BL/6?J mice were sensitized and challenged with OVA to induce eosinophilic asthma model, as well as sensitized with OVA plus LPS and challenged with OVA to induce neutrophilic asthma model. We evaluated effect of recombinant PTX3 on asthma phenotype through both asthma models. The bronchoalveolar lavage fluid (BALF) inflammatory cells and cytokines, airway hyperresponsiveness, and pathological alterations of the lung tissues were assessed. RESULTS:In both eosinophilic and neutrophilic asthma models, PTX3 treatment provoked airway hyperresponsiveness, concomitant with increased inflammatory cytokines IL-4, IL-17, eotaxin, and transforming growth factor (TGF)-?1 and aggravated airway accumulation of inflammatory cells, especially eosinophils and neutrophils. In histological analysis of the lung tissue, administration of PTX3 promoted inflammatory cells infiltration, mucus production, and collagen deposition. In addition, PTX3 also significantly enhanced STAT3 phosphorylation in lung tissue. CONCLUSION:Our results show that exogenous PTX3 can exacerbate multiple asthmatic features by promoting both eosinophils and neutrophils lung infiltration and provide new evidence to better understand the complex role of PTX3 in allergic airway inflammation.
Project description:Asthma is a chronic eosinophilic inflammatory disease with an increasing prevalence worldwide. Endocannabinoids are known to have immunomodulatory biological effects. However, the contribution of oleoylethanolamide (OEA) to airway inflammation remains to be elucidated. To investigate the effect of OEA, the expression of proinflammatory cytokines was measured by RT-qPCR and ELISA in airway epithelial (A549) cells. The numbers of airway inflammatory cells and cytokine levels in bronchoalveolar lavage fluid, airway hyperresponsiveness, and type 2 innate lymphoid cells (ILC2s) were examined in BALB/c mice after 4 days of OEA treatment. Furthermore, eosinophil activation after OEA treatment was evaluated by measuring cellular CD69 levels in eosinophils from human peripheral eosinophils using flow cytometry. OEA induced type 2 inflammatory responses in vitro and in vivo. OEA increased the levels of proinflammatory cytokines, such as IL-6, IL-8, and IL-33, in A549 cells. In addition, it also induced eosinophilic inflammation, the production of IL-4, IL-5, IL-13, and IL-33 in bronchoalveolar lavage fluid, and airway hyperresponsiveness. OEA increased the numbers of IL-5- or IL-13-producing ILC2s in a mouse model. Finally, we confirmed that OEA increased CD69 expression (an eosinophil activation marker) on purified eosinophils from patients with asthma compared to those from healthy controls. OEA may play a role in the pathogenesis of asthma by activating ILC2s and eosinophils.
Project description:The unfolded protein response (UPR) is associated with the risk of asthma, including treatment-refractory severe asthma. Recent studies demonstrated a pathogenic role of activating transcription factor 6a (ATF6a or ATF6), an essential UPR sensor, in airway structural cells. However, its role in T helper (TH) cells has not been well examined. In this study, we found that ATF6 was selectively induced by signal transducer and activator of transcription6 (STAT6) and STAT3 in TH2 and TH17 cells, respectively. ATF6 upregulated UPR genes and promoted the differentiation and cytokine secretion of TH2 and TH17 cells. T cell-specific Atf6-deficiency impaired TH2 and TH17 responses in vitro and in vivo and attenuated mixed granulocytic experimental asthma. ATF6 inhibitor Ceapin A7 suppressed the expression of ATF6 downstream genes and TH cell cytokines by both murine and human memory clusters of differentiation 4 (CD4)+ T cells. At the chronic stage of asthma, administration of Ceapin A7 lessened TH2 and TH17 responses, leading to alleviation of both airway neutrophilia and eosinophilia. Thus, our results demonstrate a critical role of ATF6 in TH2 and TH17 cell-driven mixed granulocytic airway disease, suggesting a novel option to combat steroid-resistant mixed and even T2-low endotypes of asthma by targeting ATF6.
Project description:BACKGROUND:Using microarray profiling of airway epithelial cells, we previously identified a Th2-high molecular phenotype of asthma based on expression of periostin, CLCA1 and serpinB2 and characterized by specific inflammatory, remodeling, and treatment response features. The goal of the current study was to develop a qPCR-based assay of Th2 inflammation to overcome the limitations of microarray-based methods. METHODS:Airway epithelial brushings were obtained by bronchoscopy from two clinical studies comprising 44 healthy controls and 62 subjects with asthma, 39 of whom were studied before and after a standardized 8 week course of inhaled corticosteroids (ICS). The qPCR-based expression of periostin, CLCA1 and serpinB2 were combined into a single metric. RESULTS:In asthma, the three-gene-mean of periostin, CLCA1 and serpinB2 correlated with FeNO (r?=?0.75, p?=?0.0002), blood eosinophils (r?=?0.58, p?=?0.003) and PC20 methacholine (r?=?-0.65, p?=?0.0006), but not total serum IgE (r?=?0.33, p?=?0.1). Higher baseline three-gene-mean correlated with greater improvement in FEV1 with ICS at 2, 4 and 8 weeks (all p?<?0.05). By ROC analysis, the area under the curve (AUC) of the three-gene-mean for FEV1 improvement with ICS at 4 and 8 weeks was 0.94 and 0.87, respectively, which are higher than the AUCs of FeNO, blood eosinophils, IgE or PC20. Th2 airway inflammation as measured by this three-gene-mean also had predictive capacity for an improvement in symptoms. CONCLUSIONS:The three-gene-mean of periostin, CLCA1 and serpinB2 in airway epithelial brushings identifies Th2-high and low populations, is correlated with other Th2 biomarkers, and performs well for prediction of FEV1 improvement with ICS. The three-gene-mean provides a measurement of Th2 airway inflammation that is clinically relevant and that can serve as a valuable tool to evaluate non-invasive biomarkers to predict treatment responses to existing and emerging asthma therapies.
Project description:Endogenous redox systems not only counteract oxidative damage induced by high levels of hydroxyl radicals (OH·) under pathological conditions, but also shape redox signaling as a key player in the regulation of physiological processes. Second messengers like hydrogen peroxide and nitric oxide, as well as redox enzymes of the Thioredoxin (Trx) family, including Trxs, glutaredoxins (Grxs), and peroxiredoxins (Prxs) modulate reversible, oxidative modifications of proteins. Thereby redox regulation is part of various cellular processes such as the immune response and Trx proteins have been linked in different disorders including inflammatory diseases. Here, we have analyzed the protein distribution of representative oxidoreductases of the Trx fold protein family-Trx1, Grx1, Grx2, and Prx2-in a murine model of allergic asthma bronchiale, as well as their potential therapeutic impact on type-2 driven airway inflammation. Ovalbumin (OVA) sensitization and challenge using the type-2 prone Balb/c mouse strain resulted in increased levels of all investigated proteins in distinct cellular patterns. While concomitant treatment with Grx1 and Prx2 did not show any therapeutic impact on the outcome of the disease, Grx2 or Trx1 treatment before and during the OVA challenge phase displayed pronounced protective effects on the manifestation of allergic airway inflammation. Eosinophil numbers and the type-2 cytokine IL-5 were significantly reduced while lung function parameters profoundly improved. The number of macrophages in the bronchoalveolar lavage (BAL) did not change significantly, however, the release of nitric oxide that was linked to airway inflammation was successfully prevented by enzymatically active Grx2 ex vivo. The Grx2 Cys-X-X-Ser mutant that facilitates de-/glutathionylation, but does not catalyze dithiol/disulfide exchange lost the ability to protect from airway hyper reactivity and to decrease NO release by macrophages, however, it reduced the number of infiltrating immune cells and IL-5 release. Altogether, this study demonstrates that specific redox proteins and particular enzyme activities protect against inflammatory damage. During OVA-induced allergic airway inflammation, administration of Grx2 exerts beneficial and thus potentially therapeutic effects.
Project description:BackgroundBronchial thermoplasty (BT) is a bronchoscopic treatment for severe asthma, of which the working mechanism and responder profile are partly unknown. The aim of this study is to analyse whether BT alters airway inflammation by epithelial gene expression, inflammatory cell counts and cytokines, and whether this relates to treatment response.MethodsIn this clinical trial, 28 severe asthma patients underwent bronchoscopy before and after treatment to obtain bronchial brushes and bronchoalveolar lavage fluid (BALF) from treated and untreated airways. RNA was extracted from bronchial brushes for transcriptome analysis, and BALF cells and cytokines were analysed. Asthma quality of life questionnaires were used to distinguish responders from non-responders. We compared results before and after treatment, between treated and untreated airways, and between responders and non-responders.ResultsGene expression of airway epithelium related to airway inflammation gene set was significantly downregulated in treated airways compared to untreated airways, although this did not differ for patients before and after treatment. No differences were observed in cell counts and cytokines, neither from the untreated compared to treated airways, nor before and after treatment. At baseline, compared to non-responders, the expression of genes related to glycolysis in bronchial epithelium was downregulated and both BALF and blood eosinophil counts were higher in responders.ConclusionLocal differences in gene sets pertaining to epithelial inflammatory status were identified between treated and untreated airways after treatment, not resulting in changes in differential cell counts and cytokine analyses in BALF. Secondly, baseline epithelial glycolysis genes and eosinophil counts in BALF and blood were different between responders and non-responders. The observations from this study demonstrate the potential impact of BT on epithelial gene expression related to airway inflammation while also identifying a possible responder profile.