Project description:Tumor lysis syndrome is a metabolic complication that may follow the initiation of cancer therapy. It commonly occurs in hematological malignant patients particularly non-Hodgkin's lymphoma and acute leukemia due to chemotherapy or spontaneously. It is characterized by a biochemical abnormality such as hyperuricemia, hyperkalemia, hyperphosphatemia, and hypocalcemia and its clinical outcome is directly related to these biochemical abnormalities. Prevention and treatment of tumor lysis syndrome depend on immediate recognition of patients at risk. Therefore, identifying patients at risk and prophylactic measures are important to minimize the clinical consequences of tumor lysis syndrome. Patients with low risk should receive hydration and allopurinol. On the other hand patients with high risk should receive hydration and rasburicase in an inpatient setting. It is important to start therapy immediately, to correct all parameters before cancer treatment, to assess risk level of patients for TLS, and to select treatment options based on the risk level. In this review a comprehensive search of literatures was performed using MEDLINE/PubMed, Hinari, the Cochrane library, and Google Scholar to summarize diagnostic criteria, incidence, predicting factors, prevention, and treatment options for tumor lysis syndrome in patients with hematological malignancies.
Project description:Chimeric antigen receptor (CAR) T-cells (CAR T-cells) are a promising therapeutic approach in treating hematological malignancies. CAR T-cells represent engineered autologous T-cells, expressing a synthetic CAR, targeting tumor-associated antigens (TAAs) independent of major histocompatibility complex (MHC) presentation. The most common target is CD19 on B-cells, predominantly used for the treatment of lymphoma and acute lymphocytic leukemia (ALL), leading to approval of five different CAR T-cell therapies for clinical application. Despite encouraging clinical results, treatment of other hematological malignancies such as acute myeloid leukemia (AML) remains difficult. In this review, we focus especially on CAR T-cell application in different hematological malignancies as well as strategies for overcoming CAR T-cell dysfunction and increasing their efficacy.
Project description:Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an "off-the-shelf" NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.
Project description:Tumor immune tolerance remains a major barrier for effective anti-cancer therapy. A growing number of pathways whereby solid tumors escape immune surveillance have been characterized (1). This progress led us to revisit the "hallmarks of cancer" and brought forward many promising immunotherapies. Every growing bodies of research have brought forward many exciting treatment strategies for hematological cancers like chimeric antigen receptor T cells (CAR-T cells) and immune checkpoint inhibitors. Given the distinct characteristics of the different cancers, some benefited profoundly from such therapies while some remain challenging for scientists and physicians. Here, we discuss the unique aspect of hematological malignancies, and briefly review the history, existing and future of immunotherapies for this group of cancer.
Project description:T cell senescence has been recognized to play an immunosuppressive role in the aging population and cancer patients. Strategies dedicated to preventing or reversing replicative and premature T cell senescence are required to increase the lifespan of human beings and to reduce the morbidity from cancer. In addition, overcoming the T cell terminal differentiation or senescence from lymphoma and leukemia patients is a promising approach to enhance the effectiveness of adoptive cellular immunotherapy (ACT). Chimeric antigen receptor T (CAR-T) cell and T cell receptor-engineered T (TCR-T) cell therapy highly rely on functionally active T cells. However, the mechanisms which drive T cell senescence remain unclear and controversial. In this review, we describe recent progress for restoration of T cell homeostasis from age-related senescence as well as recovery of T cell activation in hematological malignancies.
Project description:We report a case of invasive infection due to Saprochaete capitata in a patient with hematological malignancies after chemotherapy treatment and empiric antifungal therapy with caspofungin. Although severely immunocompromised the patient survived been treated with amphotericin B lipid complex associated with voriconazole.
Project description:Recent cancer treatment modalities have been intensively focused on immunotherapy. The success of chimeric antigen receptor T cell therapy for treatment of refractory B cell acute lymphoblastic leukemia has pushed forward research on hematological malignancies. Among the effector types of innate lymphocytes, natural killer (NK) cells show great importance in immune surveillance against infectious and tumor diseases. Particularly, the role of NK cells has been argued in either elimination of target tumor cells or escape of tumor cells from immune surveillance. Therefore, an NK cell activation approach has been explored. Recent findings demonstrate that invariant natural killer T (iNKT) cells capable of producing IFN-γ when optimally activated can promptly trigger NK cells. Here, we review the role of NKT and/or NK cells and their interaction in anti-tumor responses by highlighting how innate immune cells recognize tumors, exert effector functions, and amplify adaptive immune responses. In addition, we discuss these innate lymphocytes in hematological disorders, particularly multiple myeloma and acute myeloid leukemia. The immune balance at different stages of both diseases is explored in light of disease progression. Various types of innate immunity-mediated therapeutic approaches, recent advances in clinical immunotherapies, and iNKT-mediated cancer immunotherapy as next-generation immunotherapy are then discussed.
Project description:Immunotherapies, such as monoclonal antibody therapy and checkpoint inhibitor therapy, have shown inspiring clinical effects for the treatment of cancer. Chimeric antigen receptor T (CAR-T) cells therapy was an efficacious therapeutic approach treating hematological malignancies and encouraging results have been achieved. Three kinds of CAR-T cell therapies, Kymriah (tisagenlecleucel), Yescarta (axicabtagene ciloleucel), were approved for clinical application in 2017 and Tecartus (brexucabtagene autoleucel) was approved in 2020. Despite some progress have been made in treating multiple hematologic tumors, threats still remain for the application of CAR-T cell therapy considering its toxicities and gaps in knowledge. To further comprehend present research status and trends, the review concentrates on CAR-T technologies, applications, adverse effects and safety measures about CAR-T cell therapy in hematological neoplasms. We believe that CAR-T cell therapy will exhibit superior safety and efficacy in the future and have potential to be a mainstream therapeutic choice for the elimination of hematologic tumor.
Project description:Exosomes are small membrane vesicles of endocytic origin that are produced by both tumor and normal cells and can be found in physiological fluids like plasma and cell culture supernatants. They include cytokines, growth factors, proteins, lipids, RNAs, and metabolites and are important intercellular communication controllers in several disorders. According to a vast amount of research, exosomes could support or inhibit tumor start and diffusion in a variety of solid and hematological malignancies by paracrine signaling. Exosomes are crucial therapeutic agents for a variety of illnesses, such as cancer and autoimmune diseases. This review discusses the most current and encouraging findings from in vitro and experimental in vivo research, as well as the scant number of ongoing clinical trials, with a focus on the impact of exosomes in the treatment of malignancies. Exosomes have great promise as carriers of medications, antagonists, genes, and other therapeutic materials that can be incorporated into their core in a variety of ways. Exosomes can also alter the metabolism of cancer cells, alter the activity of immunologic effectors, and alter non-coding RNAs, all of which can alter the tumor microenvironment and turn it from a pro-tumor to an anti-tumor milieu. This subject is covered in the current review, which also looks at how exosomes contribute to the onset and progression of hematological malignancies, as well as their importance in diagnosing and treating these conditions.
Project description:Telomerase expression and telomere maintenance are critical for cell proliferation and survival, and they play important roles in development and cancer, including hematological malignancies. Transcriptional regulation of the rate-limiting subunit of human telomerase reverse transcriptase gen (hTERT) is a complex process, and unveiling the mechanisms behind its reactivation is an important step for the development of diagnostic and therapeutic applications. Here, we review the main mechanisms of telomerase activation and the associated hematologic malignancies.