Unknown

Dataset Information

0

Deep learning-based point-scanning super-resolution imaging.


ABSTRACT: Point-scanning imaging systems are among the most widely used tools for high-resolution cellular and tissue imaging, benefiting from arbitrarily defined pixel sizes. The resolution, speed, sample preservation and signal-to-noise ratio (SNR) of point-scanning systems are difficult to optimize simultaneously. We show these limitations can be mitigated via the use of deep learning-based supersampling of undersampled images acquired on a point-scanning system, which we term point-scanning super-resolution (PSSR) imaging. We designed a 'crappifier' that computationally degrades high SNR, high-pixel resolution ground truth images to simulate low SNR, low-resolution counterparts for training PSSR models that can restore real-world undersampled images. For high spatiotemporal resolution fluorescence time-lapse data, we developed a 'multi-frame' PSSR approach that uses information in adjacent frames to improve model predictions. PSSR facilitates point-scanning image acquisition with otherwise unattainable resolution, speed and sensitivity. All the training data, models and code for PSSR are publicly available at 3DEM.org.

SUBMITTER: Fang L 

PROVIDER: S-EPMC8035334 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10195829 | biostudies-literature
| S-EPMC8293932 | biostudies-literature
| S-EPMC6107420 | biostudies-literature
| S-EPMC6854902 | biostudies-literature
| S-EPMC8024922 | biostudies-literature
| S-EPMC10365285 | biostudies-literature
| S-EPMC10951919 | biostudies-literature
| S-EPMC8277438 | biostudies-literature
| S-EPMC6059953 | biostudies-literature
| S-EPMC7276094 | biostudies-literature