Ontology highlight
ABSTRACT: Background
Stroke is a serious cardiovascular disease, a major cause of disability and death in both developed and developing countries. Superoxide dismutases (SODs) are enzymes that catalyze the breakdown of superoxide into oxygen and hydrogen peroxide and play a key role in the antioxidant response. This study explored the relationship between single-nucleotide polymorphisms (SNPs) in SOD genes and the risk of ischemic stroke (IS) in the Chinese Han population of Dali City.Methods
For this case-control study, the authors enrolled 144 patients who had an IS and 128 healthy controls. The SNPs rs17880487 and rs80265967 of the SOD1 gene, rs4880 and rs2842960 of the SOD2 gene, and rs2695232 and rs7655372 of the SOD3 gene were detected through TaqMan polymerase chain reaction. Genotypes and allele frequencies of the 2 groups were compared. Odds ratio and 95% confidence intervals were calculated by unconditional logistic regression, and environmental factors were corrected with multivariate logistic regression analysis.Results
Rs7655372 of SOD3 was associated with a significantly increased risk of IS. Moreover, the A and GA genotypes of SNP rs7655372 were associated with increased risk of IS, whereas the A and GA genotypes were risk factors for IS. Furthermore, multivariate logistic regression analysis showed that the rs7655372 GA genotype is the independent risk factor for IS.Conclusion
The SOD3 gene rs7655372 locus polymorphism is a risk factor for IS in the Dali region.
SUBMITTER: Yang X
PROVIDER: S-EPMC8041563 | biostudies-literature |
REPOSITORIES: biostudies-literature