Project description:Nosocomial infections occurring during extracorporeal membrane oxygenation (ECMO) support have already been reported, but few studied infections directly related to ECMO devices. This study aims to evaluate the rate of both colonisations and infections related to ECMO devices at the time of ECMO removal.We included all consecutive adult patients treated with venovenous ECMO (VV-ECMO) for at least 48 h during a 34-month study. At the time of ECMO removal, blood cultures, swab cultures on insertion cannula site and intravascular cannula extremity cultures were systematically performed. Each ECMO device was classified according to the infectious status into three groups: (1) uninfected/uncolonised ECMO device, (2) ECMO device colonisation and (3) ECMO device infection. Ninety-nine patients underwent 103 VV-ECMO, representing 1472 ECMO days. The ECMO device infection rate was 9.7% (10 events), including 7 ECMO device-related bloodstream infections (6.8%). The ECMO device colonisation rate was 32% (33 events). No difference was observed between the three groups, regarding days of mechanical ventilation, ICU length of stay, ICU mortality and in-hospital mortality. We observed a longer ECMO duration in the ECMO device colonisation group as compared to the uninfected/uncolonised ECMO device group [12 (9-20 days) vs. 5 days (5-16 days), respectively, p < 0.05].At the time of ECMO removal, systematic blood culture and intravascular extremity cannula culture may help to diagnose ECMO device-related infection. We reported a quite low infection rate related to ECMO device. Further studies are needed to evaluate the benefits of systematic strategies of cannula culture at the time of ECMO removal.
Project description:BackgroundVenovenous extracorporeal membrane oxygenation (ECMO) is increasingly being used for acute respiratory distress syndrome and as a bridge to lung transplantation. After initiation of venovenous ECMO, systemic anticoagulation therapy is traditionally administered and can cause bleeding diathesis. Here, we investigated whether venovenous ECMO can be administered without continuous systemic anticoagulation administration for patients with acute respiratory distress syndrome.MethodsThis is a retrospective review of an institutional ECMO database. We included consecutive patients from January 2015 through February 2019. Overall, 38 patients received low levels of continuous systemic anticoagulation (AC+) whereas the subsequent 36 patients received standard venous thromboprophylaxis (AC-). Published Extracorporeal Life Support Organization guidelines were used for the definition of outcomes and complications.ResultsOverall, survival was not different between the two groups (P = .58). However, patients in the AC+ group had higher rates of gastrointestinal bleeding (28.9%, vs AC- group 5.6%; P < .001). The events per patient-day of gastrointestinal bleeding was 0.00025 in the AC- group and 0.00064 in the AC+ group (P < .001). In addition, oxygenator dysfunction was increased in the AC+ group (28.9% and 0.00067 events per patient-day, vs AC- 11.1% and 0.00062 events per patient-day; P = .02). Furthermore, the AC+ group received more transfusions: packed red blood cells, AC+ group 94.7% vs AC- group 55.5% (P < .001); fresh frozen plasma, AC+ 60.5% vs AC- 16.6% (P = .001); and platelets, AC+ 84.2% vs AC- 27.7% (P < .001). There was no circuit thrombosis in either groups throughout the duration of ECMO support.ConclusionsOur results suggest that venovenous ECMO can be safely administered without continuous systemic anticoagulation therapy. This approach may be associated with reduced bleeding diathesis and need for blood transfusions.
Project description:No major study has been performed on the conversion from venovenous (VV) to venoarterial (VA) extracorporeal membrane oxygenation (ECMO) in adults. This single-center retrospective cohort study aimed to investigate the incidence, indication, and outcome in patients who converted from VV to VA ECMO. All adult patients (≥18 years) who commenced VV ECMO at our center between 2005 and 2018 were screened. Of 219 VV ECMO patients, 21% (n = 46) were converted to VA ECMO. The indications for conversion were right ventricular failure (RVF) (65%), cardiogenic shock (26%), and other (9%). In the converted patients, there was a significant increase in Sequential Organ Failure Assessment (SOFA) scores between admission 12 (9-13) and conversion 15 (13-17, p < 0.001). Compared to non-converted patients, converted patients also had a higher mortality rate (62% vs. 16%, p < 0.001) and a lower admission Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score (p < 0.001). Outcomes were especially unfavorable in those converted due to RVF. These results indicate that VA ECMO, as opposed to VV ECMO, should be considered as the first mode of choice in patients with respiratory failure and signs of circulatory impairment, especially in those with impaired RV function. For the remaining patients, Pre-admission RESP score, daily echocardiography, and SOFA score trajectories may help in the early identification of those where conversion from VV to VA ECMO is warranted. Multi-centric studies are warranted to validate these findings.
Project description:BackgroundA life-threatening complication of coronavirus disease 2019 (COVID-19) is acute respiratory distress syndrome (ARDS) refractory to conventional management. Venovenous (VV) extracorporeal membrane oxygenation (ECMO) (VV-ECMO) is used to support patients with ARDS in whom conventional management fails. Scoring systems to predict mortality in VV-ECMO remain unvalidated in COVID-19 ARDS. This report describes a large single-center experience with VV-ECMO in COVID-19 and assesses the utility of standard risk calculators.MethodsA retrospective review of a prospective database of all patients with COVID-19 who underwent VV-ECMO cannulation between March 15 and June 27, 2020 at a single academic center was performed. Demographic, clinical, and ECMO characteristics were collected. The primary outcome was in-hospital mortality; survivor and nonsurvivor cohorts were compared by using univariate and bivariate analyses.ResultsForty patients who had COVID-19 and underwent ECMO were identified. Of the 33 patients (82.5%) in whom ECMO had been discontinued at the time of analysis, 18 patients (54.5%) survived to hospital discharge, and 15 (45.5%) died during ECMO. Nonsurvivors presented with a statistically significant higher Prediction of Survival on ECMO Therapy (PRESET)-Score (mean ± SD, 8.33 ± 0.8 vs 6.17 ± 1.8; P = .001). The PRESET score demonstrated accurate mortality prediction. All patients with a PRESET-Score of 6 or lowers survived, and a score of 7 or higher was associated with a dramatic increase in mortality.ConclusionsThese results suggest that favorable outcomes are possible in patients with COVID-19 who undergo ECMO at high-volume centers. This study demonstrated an association between the PRESET-Score and survival in patients with COVID-19 who underwent VV-ECMO. Standard risk calculators may aid in appropriate selection of patients with COVID-19 ARDS for ECMO.
Project description:The mortality rate for respiratory failure resulting from obesity hypoventilation syndrome is high if it requires ventilator management. We describe a case of severe acute respiratory failure resulting from obesity hypoventilation syndrome (BMI, 60.2?kg/m2) successfully treated with venovenous extracorporeal membrane oxygenation (VV-ECMO). During ECMO management, a mucus plug was removed by bronchoscopy daily and 18?L of water was removed using diuretics, resulting in weight loss of 24?kg. The patient was weaned from ECMO on day 5, extubated on day 16, and discharged on day 21. The fundamental treatment for obesity hypoventilation syndrome in morbidly obese patients is weight loss. VV-ECMO can be used for respiratory support until weight loss has been achieved.
Project description:OBJECTIVE: To explore how neonates with respiratory failure are selected for extracorporeal membrane oxygenation (ECMO) once severity of illness criteria are met, and to determine how conflicts between ECMO providers and parents over the initiation of ECMO are addressed. STUDY DESIGN: A cross-sectional study was conducted using a data collection survey, which was sent to the directors of neonatal respiratory ECMO centers. RESULT: The lowest birth weight and gestational age at which respondents would consider placing a neonate on ECMO were frequently below recommended thresholds. There was wide variability in respondents' willingness to place neonates on ECMO in the presence of conditions such as intraventricular hemorrhage and hypoxic ischemic encephalopathy. The number of respondents who would never seek to override parental refusal of ECMO was equal to the number who would always do so. CONCLUSION: Significant variability exists in the selection criteria for neonatal ECMO and in how conflicts with parents over the provision of ECMO are resolved.