Project description:The prevalence and diagnosis of nonalcoholic fatty liver disease (NAFLD) is on the rise worldwide and currently has no FDA-approved pharmacotherapy. The increase in disease burden of NAFLD and a more severe form of this progressive liver disease, nonalcoholic steatohepatitis (NASH), largely mirrors the increase in obesity and type 2 diabetes (T2D) and reflects the hepatic manifestation of an altered metabolic state. Indeed, metabolic syndrome, defined as a constellation of obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension, is the major risk factor predisposing the NAFLD and NASH. There are multiple potential pharmacologic strategies to rebalance aspects of disordered metabolism in NAFLD. These include therapies aimed at reducing hepatic steatosis by directly modulating lipid metabolism within the liver, inhibiting fructose metabolism, altering delivery of free fatty acids from the adipose to the liver by targeting insulin resistance and/or adipose metabolism, modulating glycemia, and altering pleiotropic metabolic pathways simultaneously. Emerging data from human genetics also supports a role for metabolic drivers in NAFLD and risk for progression to NASH. In this review, we highlight the prominent metabolic drivers of NAFLD pathogenesis and discuss the major metabolic targets of NASH pharmacotherapy.
Project description:Nonalcoholic fatty liver disease (NAFLD) is a rapidly emerging hepatic manifestation of metabolic syndrome. However, its unrevealed mechanism and complicated comorbidities have led to no specific medication, except for weight loss and lifestyle modification. Alisma orientale (Sam.) Juzep (A. orientale, Alismataceae) has been increasingly reported on therapeutic effects of A. orientale against NAFLD and metabolic syndrome such as insulin resistance, hyperlipidemia, and obesity. Therefore, this study aimed to review the preclinical efficacy of A. orientale and its chemical constituents including Alisol A 24-acetate, Alisol B 23-acetate, Alisol F, and Alismol against NAFLD and metabolic syndrome. A. orientale prevented hepatic triglyceride accumulation through suppressing de novo lipogenesis and increasing lipid export. In addition, it controlled oxidative stress markers, lipoapoptosis, liver injury panels, and inflammatory and fibrotic mediators, eventually influencing steatohepatitis and liver fibrosis. Moreover, it exhibited pharmacological activities against hyperlipidemia, obesity, and hyperglycemia as well as appetite. These biological actions of A. orientale might contribute to adiponectin activation or a role as a farnesoid X receptor agonist. In particular, Alisol A 24-acetate and Alisol B 23-acetate could be expected as main compounds. Taken together, A. orientale might be an effective candidate agent for the treatment of NAFLD and its comorbidities, although further assessment of its standardization, safety test, and clinical trials is consistently required.
Project description:Nonalcoholic fatty liver disease (NAFLD) and its more severe form, nonalcoholic steatohepatitis (NASH), can promote the development of cirrhosis, hepatocellular carcinoma, cardiovascular disease, and type 2 diabetes. Similarly, type 2 diabetes confers the greatest risk for the development of NASH, especially when associated with obesity. Although lifestyle changes are critical to success, early implementation of pharmacological treatments for obesity and type 2 diabetes are essential to treat NASH and avoid disease progression. This article reviews current guidance regarding the use of pharmacological agents such as pioglitazone, glucagon-like peptide 1 receptor agonists, and sodium-glucose cotransporter 2 inhibitors in the setting of NAFLD and NASH. It also reviews the latest information on new drugs currently being investigated for the treatment of NASH.
Project description:BackgroundNonalcoholic fatty liver disease (NAFLD) is the most common liver disease. Metabolism-related genes significantly influence the onset and progression of the disease. Hence, it is necessary to screen metabolism-related biomarkers for the diagnosis and treatment of NAFLD patients.MethodsGSE48452, GSE63067, and GSE89632 datasets including nonalcoholic steatohepatitis (NASH) and healthy controls (HC) analyzed in this study were retrieved from the Gene Expression Omnibus (GEO) database. First, differentially expressed genes (DEGs) between NASH and HC samples were obtained. Next, metabolism-related DEGs (MR-DEGs) were identified by overlapping DEGs and metabolism-related genes (MRG). Further, a protein-protein interaction (PPI) network was developed to show the interaction among MR-DEGs. Subsequently, the "Least absolute shrinkage and selection operator regression" and "Random Forest" algorithms were used to screen metabolism-related genes (MRGs) in patients with NAFLD. Next, immune cell infiltration and gene set enrichment analyses (GSEA) were performed on these metabolism-related genes. Finally, the expression of metabolism-related gene was determined at the transcription level.ResultsFirst, 129 DEGs related to NAFLD development were identified among patients with nonalcoholic steatohepatitis (NASH) and healthy control. Next, 18 MR-DEGs were identified using the Venn diagram. Subsequently, four genes, including AMDHD1, FMO1, LPL, and P4HA1, were identified using machine learning algorithms. Moreover, a regulatory network consisting of four genes, 25 microRNAs (miRNAs), and 41 transcription factors (TFs) was constructed. Finally, a significant increase in FMO1 and LPL expression levels and a decrease in AMDHD1 and P4HA1 expression levels were observed in patients in the NASH group compared to the HC group.ConclusionMetabolism-related genes associated with NAFLD were identified, containing AMDHD1, FMO1, LPL, and P4HA1, which provide insights into diagnosing and treating patients with NAFLD.
Project description:Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and it encompasses a spectrum from simple steatosis to steatohepatitis, fibrosis, or cirrhosis. The mechanisms involved in the occurrence of NAFLD and its progression are probably due to a metabolic profile expressed within the context of a genetic predisposition and is associated with a higher energy intake. The metabolic syndrome (MS) is a cluster of metabolic alterations associated with an increased risk for the development of cardiovascular diseases and diabetes. NAFLD patients have more than one feature of the MS, and now they are considered the hepatic components of the MS. Several scientific advances in understanding the association between NAFLD and MS have identified insulin resistance (IR) as the key aspect in the pathophysiology of both diseases. In the multi parallel hits theory of NAFLD pathogenesis, IR was described to be central in the predisposition of hepatocytes to be susceptible to other multiple pathogenetic factors. The recent knowledge gained from these advances can be applied clinically in the prevention and management of NAFLD and its associated metabolic changes. The present review analyses the current literature and highlights the new evidence on the metabolic aspects in the adult patients with NAFLD.
Project description:Nonalcoholic fatty liver disease (NAFLD) is a multifactorial metabolic disorder that was first described in 1980. It has been prevalent and on the rise for many years and is associated with other metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM). NAFLD can be best described as a metabolic dysfunction that stems from insulin resistance-induced hepatic lipogenesis. This lipogenesis increases oxidative stress and hepatic inflammation and is often potentiated by genetic and gut microbiome dysfunction. As NAFLD progresses from simple steatosis to non-alcoholic steatohepatitis (NASH) and to cirrhosis and hepatocellular carcinoma (HCC), the odds of complications including cardiovascular disease (CVD), chronic kidney disease (CKD), and overall mortality increase. The aim of this review is to describe the metabolic causes and consequences of NAFLD while examining the risks that each stage of NAFLD poses. In this review, the etiology of "lean" NAFLD, the impact of obesity, T2DM, genetics, and microbiome dysbiosis on NAFLD progression are all explored. This review will also discuss the core issue behind the progression of NAFLD: insulin resistance (IR). Upon describing the causes and consequences of NAFLD, the effectiveness of diet modification, lifestyle changes, and glucagon-like peptide 1 receptor (GLP-1) agonists to retard NAFLD progression and stem the rate of complications is examined.
Project description:Nonalcoholic fatty liver disease (NAFLD) refers to excess fat accumulation in the liver. In animal experiments and human kinetic study, we found that administration of combined metabolic activators (CMA) promotes the oxidation of fat, attenuates the resulting oxidative stress, activates mitochondria and eventually removes excess fat from the liver. Here, we tested the safety and efficacy of CMA in NAFLD patients in a placebo-controlled 10-week study. We found that CMA significantly decreased hepatic steatosis and levels of aspartate aminotransferase, alanine aminotransferase, uric acid, and creatinine, whereas found no differences on these variables in the placebo group after adjustment for weight loss. By integrating clinical data with plasma metabolomics and inflammatory proteomics as well as oral and gut metagenomics data, we revealed the underlying molecular mechanisms associated with the reduced hepatic fat and inflammation in NAFLD patients and identified the key players involved in the host-microbiome interactions. In conclusion, we showed that CMA can be used to develop a pharmacological treatment strategy in NAFLD patients.
Project description:Nonalcoholic fatty liver disease (NAFLD) refers to excess fat accumulation in the liver. In animal experiments and human kinetic study, we found that administration of combined metabolic activators (CMAs) promotes the oxidation of fat, attenuates the resulting oxidative stress, activates mitochondria, and eventually removes excess fat from the liver. Here, we tested the safety and efficacy of CMA in NAFLD patients in a placebo-controlled 10-week study. We found that CMA significantly decreased hepatic steatosis and levels of aspartate aminotransferase, alanine aminotransferase, uric acid, and creatinine, whereas found no differences on these variables in the placebo group after adjustment for weight loss. By integrating clinical data with plasma metabolomics and inflammatory proteomics as well as oral and gut metagenomic data, we revealed the underlying molecular mechanisms associated with the reduced hepatic fat and inflammation in NAFLD patients and identified the key players involved in the host-microbiome interactions. In conclusion, we showed that CMA can be used to develop a pharmacological treatment strategy in NAFLD patients.
Project description:Our understanding of the mechanisms by which nonalcoholic fatty liver disease (NAFLD) progresses from simple steatosis to steatohepatitis (NASH) is still very limited. Despite the growing number of studies linking the disease with altered serum metabolite levels, an obstacle to the development of metabolome-based NAFLD predictors has been the lack of large cohort data from biopsy-proven patients matched for key metabolic features such as obesity. We studied 467 biopsied individuals with normal liver histology (n=90) or diagnosed with NAFLD (steatosis, n=246; NASH, n=131), randomly divided into estimation (80% of all patients) and validation (20% of all patients) groups. Qualitative determinations of 540 serum metabolite variables were performed using ultraperformance liquid chromatography coupled to mass spectrometry (UPLC-MS). The metabolic profile was dependent on patient body-mass index (BMI), suggesting that the NAFLD pathogenesis mechanism may be quite different depending on an individual's level of obesity. A BMI-stratified multivariate model based on the NAFLD serum metabolic profile was used to separate patients with and without NASH. The area under the receiver operating characteristic curve was 0.87 in the estimation and 0.85 in the validation group. The cutoff (0.54) corresponding to maximum average diagnostic accuracy (0.82) predicted NASH with a sensitivity of 0.71 and a specificity of 0.92 (negative/positive predictive values=0.82/0.84). The present data, indicating that a BMI-dependent serum metabolic profile may be able to reliably distinguish NASH from steatosis patients, have significant implications for the development of NASH biomarkers and potential novel targets for therapeutic intervention.