Ontology highlight
ABSTRACT: Background
Immune and stromal component evaluation is necessary to establish accurate prognostic markers for the prediction of clinical outcomes in lung adenocarcinoma (LUAD). We aimed to develop a gene signature based on the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE)-stromal-immune score in LUAD.Methods
The transcriptomic profiles of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA), and the immune and stromal scores were derived using the ESTIMATE algorithm. The prognostic signature genes were selected from the differentially expressed genes (DEGs) using the robust partial likelihood-based cox proportional hazards regression method. The negative log-likelihood and the Akaike Information Criterion (AIC) were used to identify the optimal gene signature. The validation was carried out in 2 independent datasets from the Gene Expression Omnibus (GSE68571 and GSE72094).Results
Patients with high ESTIMATE, stromal, and immune scores had better overall survivals (P=0.0035, P=0.066, and P=0.0077). The expression of thirty-seven genes was related to ESTIMATE-stromal-immune score. A risk stratification model was developed based on a gene signature containing CD74, JCHAIN, and PTGDS. The ESTIMATE-stromal-immune risk score was revealed to be a prognostic factor (P=0.009) after multivariate analysis. Four groups were classified based on this risk stratification model, yielding increasing survival outcomes (log-rank test, P=0.0051). This risk stratification model and other clinicopathological factors were combined to generate a nomogram. The calibration curves showed perfect agreement between the nomogram-predicted outcomes and those actually observed. Similar observations were made in 2 independent cohorts.Conclusions
The gene signature based on the ESTIMATE-stromal-immune score could predict the prognosis of patients with LUAD.
SUBMITTER: Ma Q
PROVIDER: S-EPMC8044489 | biostudies-literature |
REPOSITORIES: biostudies-literature