Project description:The relationship between SARS-CoV-2 viral load and risk of disease progression remains largely undefined in coronavirus disease 2019 (COVID-19). Here, we quantify SARS-CoV-2 viral load from participants with a diverse range of COVID-19 disease severity, including those requiring hospitalization, outpatients with mild disease, and individuals with resolved infection. We detected SARS-CoV-2 plasma RNA in 27% of hospitalized participants, and 13% of outpatients diagnosed with COVID-19. Amongst the participants hospitalized with COVID-19, we report that a higher prevalence of detectable SARS-CoV-2 plasma viral load is associated with worse respiratory disease severity, lower absolute lymphocyte counts, and increased markers of inflammation, including C-reactive protein and IL-6. SARS-CoV-2 viral loads, especially plasma viremia, are associated with increased risk of mortality. Our data show that SARS-CoV-2 viral loads may aid in the risk stratification of patients with COVID-19, and therefore its role in disease pathogenesis should be further explored.
Project description:BackgroundIndividuals with asymptomatic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can propagate the virus unknowingly and thus have been a focus of public health attentions since the early stages of the pandemic. Understanding viral transmissibility among asymptomatic individuals is critical for successful control of coronavirus disease 2019 (COVID-19). The present study aimed to understand SARS-CoV-2 transmissibility among young asymptomatic individuals and to assess whether symptomatology was associated with transmission of symptomatic vs. asymptomatic infections.MethodsWe analyzed one of the first-identified clusters of SARS-CoV-2 infections with multiple chains of transmission that occurred among university students in March 2020 in Kyoto prefecture, Japan, using discrete and two-type branching process models. Assuming that the number of secondary cases resulting from either primary symptomatic or asymptomatic cases independently followed negative binomial distributions, we estimated the relative reproduction numbers of an asymptomatic case compared with a symptomatic case. To explore the potential association between symptomatology and transmission of symptomatic vs. asymptomatic incident infections, we also estimated the proportion of secondary symptomatic cases produced by primary symptomatic and asymptomatic cases.ResultsThe reproduction number for a symptomatic primary case was estimated at 1.14 (95% confidence interval [CI]: 0.61-2.09). The relative reproduction number for asymptomatic cases was estimated at 0.19 (95% CI: 0.03-0.66), indicating that asymptomatic primary cases did not result in sufficient numbers of secondary infections to maintain chains of transmission. There was no apparent tendency for symptomatic primary cases to preferentially produce symptomatic secondary cases.ConclusionsUsing data from a transmission network during the early epidemic in Japan, we successfully estimated the relative transmissibility of asymptomatic cases of SARS-CoV-2 infection at 0.22. These results suggest that contract tracing focusing on symptomatic index cases may be justified given limited testing capacity.
Project description:SARS-CoV-2 is difficult to contain because many transmissions occur during pre-symptomatic infection. Unlike influenza, most SARS-CoV-2-infected people do not transmit while a small percentage infect large numbers of people. We designed mathematical models which link observed viral loads with epidemiologic features of each virus, including distribution of transmissions attributed to each infected person and duration between symptom onset in the transmitter and secondarily infected person. We identify that people infected with SARS-CoV-2 or influenza can be highly contagious for less than 1 day, congruent with peak viral load. SARS-CoV-2 super-spreader events occur when an infected person is shedding at a very high viral load and has a high number of exposed contacts. The higher predisposition of SARS-CoV-2 toward super-spreading events cannot be attributed to additional weeks of shedding relative to influenza. Rather, a person infected with SARS-CoV-2 exposes more people within equivalent physical contact networks, likely due to aerosolization.
Project description:The 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged resulting in increased severity and transmissibility. Here, we used PCR as a surrogate for viral load and consequent severity to evaluate the real-world capabilities of a genome-based clinical severity predictive algorithm. Using a previously published algorithm, we compared the viral genome-based severity predictions to clinically derived PCR-based viral load of 716 viral genomes. For those samples predicted to be "severe" (probability of severe illness >0.5), we observed an average cycle threshold (Ct) of 18.3, whereas those in in the "mild" category (severity probability <0.5) had an average Ct of 20.4 (P=0.0017). We also found a nontrivial correlation between predicted severity probability and cycle threshold (r = -0.199). Finally, when divided into severity probability quartiles, the group most likely to experience severe illness (≥75% probability) had a Ct of 16.6 (n = 10), whereas the group least likely to experience severe illness (<25% probability) had a Ct of 21.4 (n = 350) (P=0.0045). Taken together, our results suggest that the severity predicted by a genome-based algorithm can be related to clinical diagnostic tests and that relative severity may be inferred from diagnostic values.
Project description:SARS-CoV-2 viral load and detection of infectious virus in the respiratory tract are the two key parameters for estimating infectiousness. As shedding of infectious virus is required for onward transmission, understanding shedding characteristics is relevant for public health interventions. Viral shedding is influenced by biological characteristics of the virus, host factors and pre-existing immunity (previous infection or vaccination) of the infected individual. Although the process of human-to-human transmission is multifactorial, viral load substantially contributed to human-to-human transmission, with higher viral load posing a greater risk for onward transmission. Emerging SARS-CoV-2 variants of concern have further complicated the picture of virus shedding. As underlying immunity in the population through previous infection, vaccination or a combination of both has rapidly increased on a global scale after almost 3 years of the pandemic, viral shedding patterns have become more distinct from those of ancestral SARS-CoV-2. Understanding the factors and mechanisms that influence infectious virus shedding and the period during which individuals infected with SARS-CoV-2 are contagious is crucial to guide public health measures and limit transmission. Furthermore, diagnostic tools to demonstrate the presence of infectious virus from routine diagnostic specimens are needed.
Project description:BackgroundFactors that lead to successful SARS-CoV-2 transmission are still not well described. We investigated the association between a case's viral load and the risk of transmission to contacts in the context of other exposure-related factors.MethodsData were generated through routine testing and contact tracing at a large university. Case viral loads were obtained from cycle threshold values associated with a positive polymerase chain reaction test result from October 1, 2020 to April 15, 2021. Cases were included if they had at least one contact who tested 3-14 days after the exposure. Case-contact pairs were formed by linking index cases with contacts. Chi-square tests were used to evaluate differences in proportions of contacts testing positive. Generalized estimating equation models with a log link were used to evaluate whether viral load and other exposure-related factors were associated with a contact testing positive.ResultsMedian viral load among the 212 cases included in the study was 5.6 (1.8-10.4) log10 RNA copies per mL of saliva. Among 365 contacts, 70 (19%) tested positive following their exposure; 36 (51%) were exposed to a case that was asymptomatic or pre-symptomatic on the day of exposure. The proportion of contacts that tested positive increased monotonically with index case viral load (12%, 23% and 25% corresponding to < 5, 5-8 and > 8 log10 copies per mL, respectively; X2 = 7.18, df = 2, p = 0.03). Adjusting for cough, time between test and exposure, and physical contact, the risk of transmission to a close contact was significantly associated with viral load (RR = 1.27, 95% CI 1.22-1.32).ConclusionsFurther research is needed to understand whether these relationships persist for newer variants. For those variants whose transmission advantage is mediated through a high viral load, public health measures could be scaled accordingly. Index cases with higher viral loads could be prioritized for contact tracing and recommendations to quarantine contacts could be made according to the likelihood of transmission based on risk factors such as viral load.
Project description:OBJECTIVES:To summarise the evidence on the detection pattern and viral load of SARS-CoV-2 over the course of an infection (including any asymptomatic or pre-symptomatic phase), and the duration of infectivity. METHODS:A systematic literature search was undertaken in PubMed, Europe PubMed Central and EMBASE from 30 December 2019 to 12 May 2020. RESULTS:We identified 113 studies conducted in 17 countries. The evidence from upper respiratory tract samples suggests that the viral load of SARS-CoV-2 peaks around symptom onset or a few days thereafter, and becomes undetectable about two weeks after symptom onset; however, viral loads from sputum samples may be higher, peak later and persist for longer. There is evidence of prolonged virus detection in stool samples, with unclear clinical significance. No study was found that definitively measured the duration of infectivity; however, patients may not be infectious for the entire duration of virus detection, as the presence of viral ribonucleic acid may not represent transmissible live virus. CONCLUSION:There is a relatively consistent trajectory of SARS-CoV-2 viral load over the course of COVID-19 from respiratory tract samples, however the duration of infectivity remains uncertain.
Project description:The correlation between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral load and risk of disease severity in cancer patients is poorly understood. Given the fact that cancer patients are at increased risk of severe coronavirus disease 2019 (COVID-19), analysis of viral load and disease outcome in COVID-19-infected cancer patients is needed. Here, we measured the SARS-CoV-2 viral load using qPCR cycle threshold (Ct) values collected from 120 noncancer and 64 cancer patients' nasopharyngeal swab samples who are admitted to hospitals. Our results showed that the in-hospital mortality for high viral load cancer patients was 41.38%, 23.81% for medium viral load and 14.29% for low viral load patients (p < -0.01). On the other hand, the mortality rate for noncancer patients was lower: 22.22% among patients with high viral load, 5.13% among patients with medium viral load, and 1.85% among patients with low viral load (p < 0.05). In addition, patients with lung and hematologic cancer showed higher possibilities of severe events in proportion to high viral load. Higher attributable mortality and severity were directly proportional to high viral load particularly in patients who are receiving anticancer treatment. Importantly, we found that the incubation period and serial interval time is shorter in cancer patients compared with noncancer cases. Our report suggests that high SARS-CoV-2 viral loads may play a significant role in the overall mortality and severity of COVID-19-positive cancer patients, and this warrants further study to explore the disease pathogenesis and their use as prognostic tools.
Project description:Wastewater based epidemiology (WBE) has become an important tool during the COVID-19 pandemic, however the relationship between SARS-CoV-2 RNA in wastewater treatment plant influent (WWTP) and cases in the community is not well-defined. We report here the development of a national WBE program across 28 WWTPs serving 50% of the population of Scotland, including large conurbations, as well as low-density rural and remote island communities. For each WWTP catchment area, we quantified spatial and temporal relationships between SARS-CoV-2 RNA in wastewater and COVID-19 cases. Daily WWTP SARS-CoV-2 influent viral RNA load, calculated using daily influent flow rates, had the strongest correlation (ρ > 0.9) with COVID-19 cases within a catchment. As the incidence of COVID-19 cases within a community increased, a linear relationship emerged between cases and influent viral RNA load. There were significant differences between WWTPs in their capacity to predict case numbers based on influent viral RNA load, with the limit of detection ranging from 25 cases for larger plants to a single case in smaller plants. SARS-CoV-2 viral RNA load can be used to predict the number of cases detected in the WWTP catchment area, with a clear statistically significant relationship observed above site-specific case thresholds.