Unknown

Dataset Information

0

SARS-CoV-2 Genome-Based Severity Predictions Correspond to Lower qPCR Values and Higher Viral Load.


ABSTRACT: The 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged resulting in increased severity and transmissibility. Here, we used PCR as a surrogate for viral load and consequent severity to evaluate the real-world capabilities of a genome-based clinical severity predictive algorithm. Using a previously published algorithm, we compared the viral genome-based severity predictions to clinically derived PCR-based viral load of 716 viral genomes. For those samples predicted to be "severe" (probability of severe illness >0.5), we observed an average cycle threshold (Ct) of 18.3, whereas those in in the "mild" category (severity probability <0.5) had an average Ct of 20.4 (P=0.0017). We also found a nontrivial correlation between predicted severity probability and cycle threshold (r = -0.199). Finally, when divided into severity probability quartiles, the group most likely to experience severe illness (≥75% probability) had a Ct of 16.6 (n = 10), whereas the group least likely to experience severe illness (<25% probability) had a Ct of 21.4 (n = 350) (P=0.0045). Taken together, our results suggest that the severity predicted by a genome-based algorithm can be related to clinical diagnostic tests and that relative severity may be inferred from diagnostic values.

SUBMITTER: Skarzynski M 

PROVIDER: S-EPMC9173902 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

SARS-CoV-2 Genome-Based Severity Predictions Correspond to Lower qPCR Values and Higher Viral Load.

Skarzynski Martin M   McAuley Erin M EM   Maier Ezekiel J EJ   Fries Anthony C AC   Voss Jameson D JD   Chapleau Richard R RR  

Global health, epidemiology and genomics 20220531


The 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged resulting in increased severity and transmissibility. Here, we used PCR as a surrogate for viral load and consequent severity to evaluate the real-world capabilities of a genome-based clinical severity predictive algorithm. Using a previously published algor  ...[more]

Similar Datasets

| S-EPMC8519666 | biostudies-literature
| S-EPMC9933202 | biostudies-literature
| S-EPMC7603483 | biostudies-literature
| S-EPMC8687578 | biostudies-literature
| S-EPMC3691342 | biostudies-literature
| S-EPMC8206885 | biostudies-literature
| S-EPMC8046410 | biostudies-literature
| S-EPMC8982774 | biostudies-literature
| S-EPMC10143869 | biostudies-literature
| S-EPMC6292707 | biostudies-literature