Unknown

Dataset Information

0

B-Cu-Zn Gas Diffusion Electrodes for CO2 Electroreduction to C2+  Products at High Current Densities.


ABSTRACT: Electroreduction of CO2 to multi-carbon products has attracted considerable attention as it provides an avenue to high-density renewable energy storage. However, the selectivity and stability under high current densities are rarely reported. Herein, B-doped Cu (B-Cu) and B-Cu-Zn gas diffusion electrodes (GDE) were developed for highly selective and stable CO2 conversion to C2+  products at industrially relevant current densities. The B-Cu GDE exhibited a high Faradaic efficiency of 79 % for C2+  products formation at a current density of -200 mA cm-2 and a potential of -0.45 V vs. RHE. The long-term stability for C2+ formation was substantially improved by incorporating an optimal amount of Zn. Operando Raman spectra confirm the retained Cu+ species under CO2 reduction conditions and the lower overpotential for *OCO formation upon incorporation of Zn, which lead to the excellent conversion of CO2 to C2+ products on B-Cu-Zn GDEs.

SUBMITTER: Song Y 

PROVIDER: S-EPMC8048895 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8662620 | biostudies-literature
| S-EPMC8228262 | biostudies-literature
| S-EPMC9304169 | biostudies-literature
| S-EPMC10789815 | biostudies-literature
| S-EPMC8154520 | biostudies-literature
| S-EPMC8048979 | biostudies-literature
| S-EPMC10667242 | biostudies-literature
| S-EPMC9585511 | biostudies-literature
| S-EPMC9795489 | biostudies-literature
| S-EPMC9255670 | biostudies-literature