Unknown

Dataset Information

0

PLD1 and PLD2 differentially regulate the balance of macrophage polarization in inflammation and tissue injury.


ABSTRACT: Phospholipase D (PLD) isoforms PLD1 and PLD2 serve as the primary nodes where diverse signaling pathways converge. However, their isoform-specific functions remain unclear. We showed that PLD1 and PLD2 selectively couple to toll-like receptor 4 (TLR4) and interleukin 4 receptor (IL-4R) and differentially regulate macrophage polarization of M1 and M2 via the LPS-MyD88 axis and the IL-4-JAK3 signaling, respectively. Lipopolysaccharide (LPS) enhanced TLR4 or MyD88 interaction with PLD1; IL-4 induced IL-4R or JAK3 association with PLD2, indicating isozyme-specific signaling events. PLD1 and PLD2 are indispensable for M1 polarization and M2 polarization, respectively. Genetic and pharmacological targeting of PLD1 conferred protection against LPS-induced sepsis, cardiotoxin-induced muscle injury, and skin injury by promoting the shift toward M2; PLD2 ablation intensified disease severity by promoting the shift toward M1. Enhanced Foxp3+ regulatory T cell recruitment also influenced the anti-inflammatory phenotype of Pld1LyzCre macrophages. We reveal a previously uncharacterized role of PLD isoforms in macrophage polarization, signifying potential pharmacological interventions for macrophage modulation.

SUBMITTER: Hwang WC 

PROVIDER: S-EPMC8048932 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC1895436 | biostudies-literature
| S-EPMC4811113 | biostudies-literature
| S-EPMC5250617 | biostudies-literature
| S-EPMC5776711 | biostudies-other
| S-EPMC4048269 | biostudies-other
| S-EPMC3104032 | biostudies-literature
| S-EPMC3386059 | biostudies-literature
2019-04-03 | GSE129229 | GEO
| S-EPMC3131154 | biostudies-literature
| S-EPMC10372825 | biostudies-literature