Molecular Characterization of MHC Class I Genes in Four Species of the Turdidae Family to Assess Genetic Diversity and Selection.
Ontology highlight
ABSTRACT: In vertebrate animals, the molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immunity. MHC class I deals with intracellular pathogens (virus) in birds. MHC class I diversity depends on the consequence of local and global environment selective pressure and gene flow. Here, we evaluated the MHC class I gene in four species of the Turdidae family from a broad geographical area of northeast China. We isolated 77 MHC class I sequences, including 47 putatively functional sequences and 30 pseudosequences from 80 individuals. Using the method based on analysis of cloned amplicons (n = 25) for each species, we found two and seven MHC I sequences per individual indicating more than one MHC I locus identified in all sampled species. Results revealed an overall elevated genetic diversity at MHC class I, evidence of different selection patterns among the domains of PBR and non-PBR. Alleles are found to be divergent with overall polymorphic sites per species ranging between 58 and 70 (out of 291 sites). Moreover, transspecies alleles were evident due to convergent evolution or recent speciation for the genus. Phylogenetic relationships among MHC I show an intermingling of alleles clustering among the Turdidae family rather than between other passerines. Pronounced MHC I gene diversity is essential for the existence of species. Our study signifies a valuable tool for the characterization of evolutionary relevant difference across a population of birds with high conservational concerns.
SUBMITTER: Ghani MU
PROVIDER: S-EPMC8055405 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA