Unknown

Dataset Information

0

COMMD4 functions with the histone H2A-H2B dimer for the timely repair of DNA double-strand breaks.


ABSTRACT: Genomic stability is critical for normal cellular function and its deregulation is a universal hallmark of cancer. Here we outline a previously undescribed role of COMMD4 in maintaining genomic stability, by regulation of chromatin remodelling at sites of DNA double-strand breaks. At break-sites, COMMD4 binds to and protects histone H2B from monoubiquitination by RNF20/RNF40. DNA damage-induced phosphorylation of the H2A-H2B heterodimer disrupts the dimer allowing COMMD4 to preferentially bind H2A. Displacement of COMMD4 from H2B allows RNF20/40 to monoubiquitinate H2B and for remodelling of the break-site. Consistent with this critical function, COMMD4-deficient cells show excessive elongation of remodelled chromatin and failure of both non-homologous-end-joining and homologous recombination. We present peptide-mapping and mutagenesis data for the potential molecular mechanisms governing COMMD4-mediated chromatin regulation at DNA double-strand breaks.

SUBMITTER: Suraweera A 

PROVIDER: S-EPMC8055684 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3397146 | biostudies-literature
| S-EPMC9496766 | biostudies-literature
| S-EPMC3889172 | biostudies-literature
| S-EPMC4482063 | biostudies-literature
| S-EPMC5333086 | biostudies-literature
| S-EPMC3428624 | biostudies-literature
| S-EPMC509210 | biostudies-literature
| S-EPMC10287947 | biostudies-literature
| S-EPMC4534173 | biostudies-literature
| S-EPMC7193513 | biostudies-literature