Unknown

Dataset Information

0

A Novel Electrospinning Polyacrylonitrile Separator with Dip-Coating of Zeolite and Phenoxy Resin for Li-ion Batteries.


ABSTRACT: Commercial separators (polyolefin separators) for lithium-ion batteries still have defects such as low thermostability and inferior interface compatibility, which result in serious potential safety distress and poor electrochemical performance. Zeolite/Polyacrylonitrile (Z/PAN) composite separators have been fabricated by electrospinning a polyacrylonitrile (PAN) membrane and then dip-coating it with zeolite (ZSM-5). Different from commercial separators, the Z/PAN composite separators exhibit high electrolyte uptake, excellent ionic conductivity, and prominent thermal stability. Specifically, the Z/PAN-1.5 separator exhibits the best performance, with a high electrolyte uptake of 308.1% and an excellent ionic conductivity of 2.158 mS·cm-1. The Z/PAN-1.5 separator may mechanically shrink less than 10% when held at 180 °C for 30 min, proving good thermal stability. Compared with the pristine PAN separator, the Li/separator/LiFePO4 cells with the Z/PAN-1.5 composite separator have excellent high-rate discharge capacity (102.2 mAh·g-1 at 7 C) and favorable cycling performance (144.9 mAh·g-1 at 0.5 C after 100 cycles). Obviously, the Z/PAN-1.5 separator holds great promise in furthering the safety and performance of lithium-ion batteries.

SUBMITTER: Chen D 

PROVIDER: S-EPMC8068060 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8694926 | biostudies-literature
| S-EPMC8880128 | biostudies-literature
| S-EPMC9081596 | biostudies-literature
| S-EPMC6593149 | biostudies-literature
| S-EPMC9413679 | biostudies-literature
| S-EPMC5676610 | biostudies-literature
| S-EPMC8188195 | biostudies-literature
| S-EPMC7820226 | biostudies-literature
| S-EPMC11369462 | biostudies-literature
| S-EPMC9403007 | biostudies-literature