Project description:The COVID-19 pandemic has kept the world in suspense for the past year. In most federal countries such as Germany, locally varying conditions demand for state- or county-level decisions to adapt to the disease dynamics. However, this requires a deep understanding of the mesoscale outbreak dynamics between microscale agent models and macroscale global models. Here, we use a reparameterized SIQRD network model that accounts for local political decisions to predict the spatiotemporal evolution of the pandemic in Germany at county resolution. Our optimized model reproduces state-wise cumulative infections and deaths as reported by the Robert Koch Institute and predicts the development for individual counties at convincing accuracy during both waves in spring and fall of 2020. We demonstrate the dominating effect of local infection seeds and identify effective measures to attenuate the rapid spread. Our model has great potential to support decision makers on a state and community politics level to individually strategize their best way forward during the months to come.
Project description:BackgroundIn the 2nd year of the COVID-19 pandemic, knowledge about the dynamics of the infection in the general population is still limited. Such information is essential for health planners, as many of those infected show no or only mild symptoms and thus, escape the surveillance system. We therefore aimed to describe the course of the pandemic in the Munich general population living in private households from April 2020 to January 2021.MethodsThe KoCo19 baseline study took place from April to June 2020 including 5313 participants (age 14 years and above). From November 2020 to January 2021, we could again measure SARS-CoV-2 antibody status in 4433 of the baseline participants (response 83%). Participants were offered a self-sampling kit to take a capillary blood sample (dry blood spot; DBS). Blood was analysed using the Elecsys® Anti-SARS-CoV-2 assay (Roche). Questionnaire information on socio-demographics and potential risk factors assessed at baseline was available for all participants. In addition, follow-up information on health-risk taking behaviour and number of personal contacts outside the household (N = 2768) as well as leisure time activities (N = 1263) were collected in summer 2020.ResultsWeighted and adjusted (for specificity and sensitivity) SARS-CoV-2 sero-prevalence at follow-up was 3.6% (95% CI 2.9-4.3%) as compared to 1.8% (95% CI 1.3-3.4%) at baseline. 91% of those tested positive at baseline were also antibody-positive at follow-up. While sero-prevalence increased from early November 2020 to January 2021, no indication of geospatial clustering across the city of Munich was found, although cases clustered within households. Taking baseline result and time to follow-up into account, men and participants in the age group 20-34 years were at the highest risk of sero-positivity. In the sensitivity analyses, differences in health-risk taking behaviour, number of personal contacts and leisure time activities partly explained these differences.ConclusionThe number of citizens in Munich with SARS-CoV-2 antibodies was still below 5% during the 2nd wave of the pandemic. Antibodies remained present in the majority of SARS-CoV-2 sero-positive baseline participants. Besides age and sex, potentially confounded by differences in behaviour, no major risk factors could be identified. Non-pharmaceutical public health measures are thus still important.
Project description:We sought to determine if there was a difference in the longitudinal inflammatory response measured by white blood cell count (WBC), C-reactive protein (CRP), procalcitonin (PCT), and ferritin levels between the first and the second COVID-19 wave of ICU patients. In a single-center retrospective observational study, ICU patients were enrolled during the first and second waves of the COVID-19 pandemic. Data were collected on patient demographics, comorbidities, laboratory results, management strategies, and complications during the ICU stay. The inflammatory response was evaluated using WBC count, CRP, PCT, and Ferritin levels on the day of admission until Day 28, respectively. Organ dysfunction was measured by the SOFA score. 65 patients were admitted during the first and 113 patients during the second wave. WBC and ferritin levels were higher in the second wave. CRP and PCT showed markedly different longitudinal kinetics up until day 28 of ICU stay between the first and second wave, with significantly lower levels in the second wave. Steroid and immunomodulatory therapy use was significantly greater in the second wave. Mortality was similar in both waves. We found that there was a significantly reduced inflammatory response in the second wave, which is likely to be attributable to the more widespread use of immunomodulatory therapies.
Project description:BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated disease coronavirus disease 2019 (COVID-19), is a worldwide emergency. Demographic, comorbidity and laboratory determinants of death and of ICU admission were explored in all Danish hospitalised patients.MethodsNational health registries were used to identify all hospitalized patients with a COVID-19 diagnosis. We obtained demographics, Charlson Comorbidity Index (CCI), and laboratory results on admission and explored prognostic factors for death using multivariate Cox proportional hazard regression and competing risk survival analysis.ResultsAmong 2431 hospitalised patients with COVID-19 between February 27 and July 8 (median age 69 years [IQR 53-80], 54.1% males), 359 (14.8%) needed admission to an intensive care unit (ICU) and 455 (18.7%) died within 30 days of follow-up. The seven-day cumulative incidence of ICU admission was lower for females (7.9%) than for males (16.7%), (p < 0.001). Age, high CCI, elevated C-reactive protein (CRP), ferritin, D-dimer, lactate dehydrogenase (LDH), urea, creatinine, lymphopenia, neutrophilia and thrombocytopenia within ±24-h of admission were independently associated with death within the first week in the multivariate analysis. Conditional upon surviving the first week, male sex, age, high CCI, elevated CRP, LDH, creatinine, urea and neutrophil count were independently associated with death within 30 days. Males presented with more pronounced laboratory abnormalities on admission.ConclusionsAdvanced age, male sex, comorbidity, higher levels of systemic inflammation and cell-turnover were independent factors for mortality. Age was the strongest predictor for death, moderate to high level of comorbidity were associated with a nearly two-fold increase in mortality. Mortality was significantly higher in males after surviving the first week.
Project description:BackgroundA decline in hospitalization for cardiovascular events and catheter laboratory activation was reported for the United States and Italy during the initial stage of the Covid-19 pandemic of 2020. We report on the deployment of emergency services for cardiovascular events in a defined region in western Germany during the government-imposed lock-down period.MethodsWe examined 5799 consecutive patients who were treated by emergency services for cardiovascular events during the Covid-19 pandemic (January 1 to April 30, 2020), and compared those to the corresponding time frame in 2019. Examining the emergency physicians' records provided by nine locations in the area, we found a 20% overall decline in cardiovascular admissions.ResultsThe greatest reduction could be seen immediately following the government-imposed social restrictions. This reduction was mainly driven by a reduction in discretionary admissions for dizziness/syncope (-53%), heart failure (-38%), exacerbated COPD (-28%) and unstable angina (-23%), while unavoidable admissions for ST-elevation myocardial infarction (STEMI), cardiopulmonary resuscitation (CPR) and stroke were unchanged. There was a greater decline in emergency admissions for patients ≥60 years. There was also a greater reduction in emergency admissions for those living in urban areas compared to suburban areas.ConclusionsDuring the Covid-19 pandemic, a significant decline in hospitalization for cardiovascular events was observed during the government-enforced shutdown in a predefined area in western Germany. This reduction in admissions was mainly driven by "discretionary" cardiovascular events (unstable angina, heart failure, exacerbated COPD and dizziness/syncope), but events in which admission was unavoidable (CPR, STEMI and stroke) did not change.
Project description:Over the course of the second pandemic wave in late 2020, new infections with severe acute respiratory syndrome coronavirus-2 shifted from the most affluent to the most deprived regions of Germany. This study investigated how this trend in infections played out for deaths due to coronavirus disease 2019 (COVID-19) by examining area-level socio-economic disparities in COVID-19-related mortality during the second pandemic wave in Germany. The analysis was based on nationwide data on notified deaths, which were linked to an area-based index of socio-economic deprivation. In the autumn and winter of 2020/2021, COVID-19-related deaths increased faster among residents in Germany's more deprived districts. From late 2020 onwards, the mortality risks of men and women in the most deprived districts were 1.52 (95% confidence interval [CI] 1.27-1.82] and 1.44 (95% CI 1.19-1.73) times higher than among those in the most affluent districts, respectively, after adjustment for age, urbanization and population density. To promote health equity in the pandemic and beyond, deprived populations should receive increased attention in pandemic planning, infection control and disease prevention.
Project description:COVID-19 dramatically influenced mortality worldwide, in Italy as well, the first European country to experience the Sars-Cov2 epidemic. Many countries reported a two-wave pattern of COVID-19 deaths; however, studies comparing the two waves are limited. The objective of the study was to compare all-cause excess mortality between the two waves that occurred during the year 2020 using nationwide data. All-cause excess mortalities were estimated using negative binomial models with time modeled by quadratic splines. The models were also applied to estimate all-cause excess deaths "not directly attributable to COVD-19", i.e., without a previous COVID-19 diagnosis. During the first wave (25th February-31st May), we estimated 52,437 excess deaths (95% CI: 49,213-55,863) and 50,979 (95% CI: 50,333-51,425) during the second phase (10th October-31st December), corresponding to percentage 34.8% (95% CI: 33.8%-35.8%) in the second wave and 31.0% (95%CI: 27.2%-35.4%) in the first. During both waves, all-cause excess deaths percentages were higher in northern regions (59.1% during the first and 42.2% in the second wave), with a significant increase in the rest of Italy (from 6.7% to 27.1%) during the second wave. Males and those aged 80 or over were the most hit groups with an increase in both during the second wave. Excess deaths not directly attributable to COVID-19 decreased during the second phase with respect to the first phase, from 10.8% (95% CI: 9.5%-12.4%) to 7.7% (95% CI: 7.5%-7.9%), respectively. The percentage increase in excess deaths from all causes suggests in Italy a different impact of the SARS-CoV-2 virus during the second wave in 2020. The decrease in excess deaths not directly attributable to COVID-19 may indicate an improvement in the preparedness of the Italian health care services during this second wave, in the detection of COVID-19 diagnoses and/or clinical practice toward the other severe diseases.