Project description:In vitro determination of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies induced in serum samples from recipients of the CoronaVac vaccine showed a short protection period against the original virus strain and limited protection against variants of concern. These data provide support for vaccine boosters, especially variants of concern circulate.
Project description:Vaccines have relieved the public health burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and globally inactivated vaccines are most widely used. However, poor vaccination accessibility and waning immunity maintain the pandemic, driving emergence of variants. We developed an inactivated SARS-CoV-2 (I-SARS-CoV-2) vaccine based on a viral isolate with the Spike mutation D614G, produced in Vero cells in a scalable bioreactor, inactivated with β-propiolactone, purified by membrane-based steric exclusion chromatography, and adjuvanted with MF59-like adjuvant AddaVax. I-SARS-CoV-2 and a derived split vaccine induced persisting neutralizing antibodies in mice; moreover, lyophilized antigen was immunogenic. Following homologous challenge, I-SARS-CoV-2 immunized hamsters were protected against disease and lung pathology. In contrast with reports for widely used vaccines, hamster plasma similarly neutralized the homologous and the Delta (B.1.617.2) variant viruses, whereas the Omicron (B.1.1.529) variant was neutralized less efficiently. Applied bioprocessing approaches offer advantages regarding scalability and production, potentially benefitting worldwide vaccine coverage.
Project description:Various variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been emerging and circulating in different parts of the world. Millions of vaccine doses have been administered globally, which reduces the morbidity and mortality of coronavirus disease-2019 efficiently. Here, we assess the immune responses of individuals after two shots of BBIBP-CorV or CoronaVac inactivated vaccine. We measured neutralizing antibody responses after the second vaccination by using authentic SARS-CoV-2 and its viral variants. All the serum samples efficiently neutralized SARS-CoV-2 wild-type lineage, in contrast, a part of serum samples failed to neutralize Alpha, Beta, Gamma, Delta, or Eta lineages, and only several serum samples were able to neutralize Omicron lineage virus strains (BA.1 and BA.2) with low neutralization titer. As compared with the neutralization of SARS-CoV-2 wild-type lineage, the neutralization of all other SARS-CoV-2 variant lineages was significantly lower. Considering that all the SARS-CoV-2 mutation viruses challenged the antibody neutralization induced by BBIBP-CorV and CoronaVac, it is necessary to carry out a third booster vaccination to increase the humoral immune response against the SARS-CoV-2 mutation viruses.
Project description:The massive and rapid transmission of SARS-CoV-2 has led to the emergence of several viral variants of concern (VOCs), with the most recent one, B.1.1.529 (Omicron), which accumulated a large number of spike mutations, raising the specter that this newly identified variant may escape from the currently available vaccines and therapeutic antibodies. Using VSV-based pseudovirus, we found that Omicron variant is markedly resistant to neutralization of sera from convalescents or individuals vaccinated by two doses of inactivated whole-virion vaccines (BBIBP-CorV). However, a homologous inactivated vaccine booster or a heterologous booster with protein subunit vaccine (ZF2001) significantly increased neutralization titers to both WT and Omicron variant. Moreover, at day 14 post the third dose, neutralizing antibody titer reduction for Omicron was less than that for convalescents or individuals who had only two doses of the vaccine, indicating that a homologous or heterologous booster can reduce the Omicron escape from neutralizing. In addition, we tested a panel of 17 SARS-CoV-2 monoclonal antibodies (mAbs). Omicron resists seven of eight authorized/approved mAbs, as well as most of the other mAbs targeting distinct epitopes on RBD and NTD. Taken together, our results suggest the urgency to push forward the booster vaccination to combat the emerging SARS-CoV-2 variants.
Project description:The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here we report the rapid identification of SARS-CoV-2 neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients.
Project description:To study vaccine-induced neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants isolated in Osaka, Japan, microneutralization tests were performed on serum samples from 32subjects who received a second dose of vaccination, and 10 of those who received the third dose of vaccination. Geometric mean titres (GMTs) for the D614G strain, Alpha variant, Delta variant, and Omicron BA.1 of the subjects after the second dose of vaccination were 19.5, 21.8, 6.3 and 2.0, respectively. The GMT for the Delta variant was significantly lower than that for the D614G strain and Alpha variant, and the GMT for the Omicron BA.1 was significantly lower than that for the Delta variant. Among the subjects who received three doses of vaccination, the GMTs for the Omicron BA.1 (62.8) and BA.2 (38.6) were significantly higher than that for the Omicron BA.1 after the second dose. Thus, in the present study, the second dose of vaccination induced neutralizing antibodies against SARS-CoV-2 strains, and the reactivity of neutralizing antibodies to the variants was thought to be enhanced by the third dose of vaccination. The serum samples used in this study will be useful in evaluating the reactivity of vaccine-induced antibodies to newly emerging variants.
Project description:A full understanding of the inactivated COVID-19 vaccine-mediated antibody responses to SARS-CoV-2 circulating variants will inform vaccine effectiveness and vaccination development strategies. Here, we offer insights into the inactivated vaccine-induced antibody responses after prime-boost vaccination at both the polyclonal and monoclonal levels. We characterized the VDJ sequence of 118 monoclonal antibodies (mAbs) and found that 20 neutralizing mAbs showed varied potency and breadth against a range of variants including XBB.1.5, BQ.1.1, and BN.1. Bispecific antibodies (bsAbs) based on nonoverlapping mAbs exhibited enhanced neutralizing potency and breadth against the most antibody-evasive strains, such as XBB.1.5, BQ.1.1, and BN.1. The passive transfer of mAbs or their bsAb effectively protected female hACE2 transgenic mice from challenge with an infectious Delta or Omicron BA.2 variant. The neutralization mechanisms of these antibodies were determined by structural characterization. Overall, a broad spectrum of potent and distinct neutralizing antibodies can be induced in individuals immunized with the SARS-CoV-2 inactivated vaccine BBIBP-CorV, suggesting the application potential of inactivated vaccines and these antibodies for preventing infection by SARS-CoV-2 circulating variants.